Normalized defining polynomial
\( x^{22} - 27 x^{20} - 240 x^{18} + 7635 x^{16} - 38835 x^{14} - 12339 x^{12} + 285228 x^{10} + 89055 x^{8} - 150795 x^{6} - 22680 x^{4} + 17874 x^{2} + 27 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-46938516011269707747849773730468750000000000=-\,2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{15} a^{8} - \frac{1}{5} a^{6} - \frac{2}{5} a^{4} + \frac{1}{5} a^{2} + \frac{2}{5}$, $\frac{1}{15} a^{9} - \frac{1}{5} a^{7} - \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{15} a^{10} + \frac{1}{5}$, $\frac{1}{15} a^{11} + \frac{1}{5} a$, $\frac{1}{15} a^{12} + \frac{1}{5} a^{2}$, $\frac{1}{15} a^{13} + \frac{1}{5} a^{3}$, $\frac{1}{15} a^{14} + \frac{1}{5} a^{4}$, $\frac{1}{45} a^{15} + \frac{2}{5} a^{5}$, $\frac{1}{450} a^{16} - \frac{1}{90} a^{15} + \frac{1}{50} a^{14} - \frac{1}{150} a^{12} - \frac{1}{30} a^{11} + \frac{2}{75} a^{10} + \frac{1}{25} a^{6} + \frac{3}{10} a^{5} - \frac{7}{50} a^{4} - \frac{3}{25} a^{2} + \frac{2}{5} a - \frac{1}{50}$, $\frac{1}{450} a^{17} + \frac{2}{225} a^{15} - \frac{1}{30} a^{14} - \frac{1}{150} a^{13} - \frac{1}{150} a^{11} + \frac{1}{25} a^{7} - \frac{1}{2} a^{6} + \frac{4}{25} a^{5} - \frac{1}{10} a^{4} - \frac{3}{25} a^{3} + \frac{19}{50} a - \frac{1}{2}$, $\frac{1}{450} a^{18} - \frac{1}{90} a^{15} - \frac{1}{50} a^{14} + \frac{1}{50} a^{12} + \frac{2}{75} a^{10} - \frac{2}{75} a^{8} - \frac{1}{2} a^{7} + \frac{1}{5} a^{6} + \frac{3}{10} a^{5} + \frac{1}{25} a^{4} - \frac{17}{50} a^{2} - \frac{1}{2} a + \frac{2}{25}$, $\frac{1}{450} a^{19} - \frac{2}{225} a^{15} - \frac{1}{30} a^{14} + \frac{1}{50} a^{13} - \frac{1}{30} a^{12} - \frac{1}{150} a^{11} - \frac{2}{75} a^{9} - \frac{1}{30} a^{8} + \frac{1}{5} a^{7} + \frac{1}{10} a^{6} - \frac{13}{50} a^{5} + \frac{1}{10} a^{4} - \frac{17}{50} a^{3} + \frac{3}{10} a^{2} + \frac{12}{25} a + \frac{3}{10}$, $\frac{1}{5888527375526233118550} a^{20} + \frac{875482668131808511}{1962842458508744372850} a^{18} - \frac{6460743139446328}{13085616390058295819} a^{16} + \frac{22767888138099636673}{981421229254372186425} a^{14} - \frac{1}{30} a^{13} + \frac{3922200010132511804}{327140409751457395475} a^{12} + \frac{3751259021390726234}{327140409751457395475} a^{10} - \frac{1}{30} a^{9} - \frac{9402679162312318667}{327140409751457395475} a^{8} - \frac{2}{5} a^{7} + \frac{619988695093916395}{26171232780116591638} a^{6} + \frac{1}{5} a^{5} + \frac{7948928888008056901}{654280819502914790950} a^{4} + \frac{3}{10} a^{3} + \frac{43658670984359556119}{654280819502914790950} a^{2} - \frac{1}{5} a + \frac{122980218033276167219}{327140409751457395475}$, $\frac{1}{5888527375526233118550} a^{21} + \frac{875482668131808511}{1962842458508744372850} a^{19} - \frac{6460743139446328}{13085616390058295819} a^{17} + \frac{2875582464007430924}{2944263687763116559275} a^{15} - \frac{1}{30} a^{14} + \frac{3922200010132511804}{327140409751457395475} a^{13} + \frac{3751259021390726234}{327140409751457395475} a^{11} - \frac{1}{30} a^{10} - \frac{9402679162312318667}{327140409751457395475} a^{9} + \frac{619988695093916395}{26171232780116591638} a^{7} - \frac{253763398913157859479}{654280819502914790950} a^{5} - \frac{1}{10} a^{4} + \frac{43658670984359556119}{654280819502914790950} a^{3} + \frac{122980218033276167219}{327140409751457395475} a + \frac{2}{5}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 650551762164000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.6 | $x^{10} - 5 x^{8} - 18 x^{6} - 46 x^{4} + 49 x^{2} - 13$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |