Normalized defining polynomial
\( x^{22} - 33 x^{20} + 451 x^{18} - 3575 x^{16} + 19338 x^{14} - 74074 x^{12} - 2852 x^{11} + 200662 x^{10} + 23496 x^{9} - 379214 x^{8} - 35640 x^{7} + 458469 x^{6} - 29568 x^{5} - 295317 x^{4} + 77132 x^{3} + 71159 x^{2} - 32472 x + 2545 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-43207326253951723658496833604222208442368=-\,2^{28}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{20} - \frac{1}{4} a^{16} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a - \frac{1}{4}$, $\frac{1}{307910527911945923018587460037103430035778604212} a^{21} - \frac{6049181405773092635010674333395010216352535620}{76977631977986480754646865009275857508944651053} a^{20} + \frac{6648801729140181238189353721035284344378656429}{153955263955972961509293730018551715017889302106} a^{19} + \frac{22832575886551927397800241598810303046563253055}{307910527911945923018587460037103430035778604212} a^{18} + \frac{7712367211361657592279285458951501946319034858}{76977631977986480754646865009275857508944651053} a^{17} + \frac{4749782810146157212791660487814592685475815168}{76977631977986480754646865009275857508944651053} a^{16} - \frac{11484260653365241032606344573911750313205016981}{153955263955972961509293730018551715017889302106} a^{15} + \frac{7528029351653708226299477907634764714733799765}{76977631977986480754646865009275857508944651053} a^{14} + \frac{25527701978663811533607120153497475146299053265}{153955263955972961509293730018551715017889302106} a^{13} + \frac{10735578079649245694883257540001119013904618654}{76977631977986480754646865009275857508944651053} a^{12} - \frac{22812139504877847714489524285266185017905830231}{153955263955972961509293730018551715017889302106} a^{11} + \frac{25214172332848353612882961145357888531610158733}{153955263955972961509293730018551715017889302106} a^{10} - \frac{49640283072780566381296356346095975325740565765}{153955263955972961509293730018551715017889302106} a^{9} + \frac{46850248179462916204894926160862473791216733687}{153955263955972961509293730018551715017889302106} a^{8} + \frac{3128733167908938573623564697885324188677476367}{76977631977986480754646865009275857508944651053} a^{7} - \frac{22876780064386651430139585884306484996964103645}{76977631977986480754646865009275857508944651053} a^{6} - \frac{72909248995741698565020810690260799637201440145}{307910527911945923018587460037103430035778604212} a^{5} + \frac{36282119282109590221496915813479326704850283792}{76977631977986480754646865009275857508944651053} a^{4} + \frac{73134939800740300915663499112614369018966625409}{153955263955972961509293730018551715017889302106} a^{3} - \frac{148315612719745031611496363386906596644393932549}{307910527911945923018587460037103430035778604212} a^{2} + \frac{29541226773977958976941788353685886142247166523}{76977631977986480754646865009275857508944651053} a - \frac{20046865240014161624265934797757649970519666837}{153955263955972961509293730018551715017889302106}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8493530131220 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |