Normalized defining polynomial
\( x^{22} - 20 x^{20} - 127 x^{18} + 3357 x^{16} + 85 x^{14} - 98678 x^{12} + 5024 x^{10} + 688029 x^{8} + 52810 x^{6} - 963192 x^{4} + 62257 x^{2} + 178929 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4129233136056857981979443884256982828952059904=-\,2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{15} a^{16} - \frac{2}{5} a^{14} + \frac{1}{3} a^{12} + \frac{2}{15} a^{10} + \frac{2}{15} a^{8} + \frac{7}{15} a^{6} + \frac{2}{5} a^{4} + \frac{2}{15} a^{2} + \frac{2}{5}$, $\frac{1}{15} a^{17} - \frac{1}{15} a^{15} + \frac{1}{3} a^{13} - \frac{1}{5} a^{11} - \frac{1}{5} a^{9} + \frac{2}{15} a^{7} - \frac{4}{15} a^{5} + \frac{2}{15} a^{3} + \frac{1}{15} a$, $\frac{1}{75} a^{18} - \frac{2}{75} a^{16} + \frac{11}{75} a^{14} - \frac{8}{75} a^{12} - \frac{1}{15} a^{10} + \frac{1}{5} a^{8} + \frac{19}{75} a^{6} + \frac{26}{75} a^{4} + \frac{29}{75} a^{2} - \frac{12}{25}$, $\frac{1}{75} a^{19} - \frac{2}{75} a^{17} + \frac{11}{75} a^{15} - \frac{8}{75} a^{13} - \frac{1}{15} a^{11} + \frac{1}{5} a^{9} + \frac{19}{75} a^{7} + \frac{26}{75} a^{5} + \frac{29}{75} a^{3} - \frac{12}{25} a$, $\frac{1}{23864535246377808373080615504375} a^{20} + \frac{134171258843182375615516800244}{23864535246377808373080615504375} a^{18} + \frac{111696487266938041890748222664}{23864535246377808373080615504375} a^{16} + \frac{9066389838934191493505946763528}{23864535246377808373080615504375} a^{14} + \frac{10841070736865834948812023686227}{23864535246377808373080615504375} a^{12} + \frac{29591938699908882984575577502}{63638760657007488994881641345} a^{10} - \frac{10907400112906190845452052882226}{23864535246377808373080615504375} a^{8} - \frac{1011868028213005152218319434477}{4772907049275561674616123100875} a^{6} + \frac{1906697635233848711202776692159}{4772907049275561674616123100875} a^{4} - \frac{333693002476930544609653131479}{7954845082125936124360205168125} a^{2} - \frac{1952021463387486643736832152162}{7954845082125936124360205168125}$, $\frac{1}{3364899469739270980604366786116875} a^{21} - \frac{3684154380577266964077381680456}{3364899469739270980604366786116875} a^{19} - \frac{63845257973025588397965301329061}{3364899469739270980604366786116875} a^{17} - \frac{85223618164738987575067227077224}{1121633156579756993534788928705625} a^{15} + \frac{995969085707341764589579831706827}{3364899469739270980604366786116875} a^{13} + \frac{6796301189348315989014251730269}{26919195757914167844834934288935} a^{11} - \frac{346601862578620695293452710977101}{3364899469739270980604366786116875} a^{9} - \frac{73055179853478225808890861988379}{224326631315951398706957785741125} a^{7} + \frac{128420553821364736833027479686019}{672979893947854196120873357223375} a^{5} + \frac{432091685661888957175611099807796}{1121633156579756993534788928705625} a^{3} + \frac{1643024224232901579926172830792464}{3364899469739270980604366786116875} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 890819354999000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||