Normalized defining polynomial
\( x^{22} + x^{20} - 251 x^{18} + 474 x^{16} + 16151 x^{14} - 58074 x^{12} - 84453 x^{10} + 36512 x^{8} + 41198 x^{6} - 7092 x^{4} - 4293 x^{2} + 729 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-4129233136056857981979443884256982828952059904=-\,2^{22}\cdot 74843^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $118.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{16} + \frac{1}{9} a^{14} - \frac{1}{3} a^{12} - \frac{4}{9} a^{10} + \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{9} a^{4} - \frac{4}{9} a^{2}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{17} - \frac{8}{27} a^{15} - \frac{4}{9} a^{13} + \frac{5}{27} a^{11} + \frac{1}{9} a^{9} + \frac{1}{9} a^{7} + \frac{8}{27} a^{5} - \frac{4}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{4863642434108272679879061} a^{20} + \frac{13880288281220188843825}{4863642434108272679879061} a^{18} + \frac{935756197350729443375338}{4863642434108272679879061} a^{16} - \frac{88842060147645625981261}{1621214144702757559959687} a^{14} + \frac{1034663000053827408077048}{4863642434108272679879061} a^{12} + \frac{15027925695367291314931}{1621214144702757559959687} a^{10} + \frac{411656259873700387830808}{1621214144702757559959687} a^{8} + \frac{1520222994193457488731182}{4863642434108272679879061} a^{6} - \frac{929010242341909233766381}{4863642434108272679879061} a^{4} + \frac{5937537401307448555828}{540404714900919186653229} a^{2} - \frac{24691545662563859249840}{60044968322324354072581}$, $\frac{1}{14590927302324818039637183} a^{21} + \frac{13880288281220188843825}{14590927302324818039637183} a^{19} + \frac{935756197350729443375338}{14590927302324818039637183} a^{17} + \frac{1532372084555111933978426}{4863642434108272679879061} a^{15} + \frac{5898305434162100087956109}{14590927302324818039637183} a^{13} + \frac{15027925695367291314931}{4863642434108272679879061} a^{11} + \frac{411656259873700387830808}{4863642434108272679879061} a^{9} + \frac{6383865428301730168610243}{14590927302324818039637183} a^{7} + \frac{3934632191766363446112680}{14590927302324818039637183} a^{5} - \frac{534467177499611738097401}{1621214144702757559959687} a^{3} - \frac{28245504661629404440807}{60044968322324354072581} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1746197624620000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||