Normalized defining polynomial
\( x^{22} - 132 x^{18} + 5104 x^{14} + 704 x^{12} - 72512 x^{10} - 22528 x^{8} + 301312 x^{6} + 129536 x^{4} - 202752 x^{2} + 25600 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-395038411464701473449113907238603048615936=-\,2^{34}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $77.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{4} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{8} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{16} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{32} a^{12}$, $\frac{1}{64} a^{13} - \frac{1}{2} a^{2}$, $\frac{1}{64} a^{14}$, $\frac{1}{128} a^{15} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{16}$, $\frac{1}{256} a^{17} - \frac{1}{8} a^{6} - \frac{1}{4} a^{4}$, $\frac{1}{256} a^{18}$, $\frac{1}{512} a^{19} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6}$, $\frac{1}{2351638489626112} a^{20} - \frac{1634315218989}{1175819244813056} a^{18} + \frac{32265688141}{146977405601632} a^{16} - \frac{1541927755575}{293954811203264} a^{14} + \frac{255990281645}{146977405601632} a^{12} + \frac{644717356819}{73488702800816} a^{10} - \frac{1424353869681}{36744351400408} a^{8} + \frac{174774503367}{4593043925051} a^{6} - \frac{1968482744615}{9186087850102} a^{4} + \frac{576350540475}{4593043925051} a^{2} - \frac{855149799359}{4593043925051}$, $\frac{1}{11758192448130560} a^{21} + \frac{2102100267435}{2351638489626112} a^{19} + \frac{4851169430179}{5879096224065280} a^{17} - \frac{308385551115}{293954811203264} a^{15} - \frac{2168526821703}{367443514004080} a^{13} + \frac{5882478638689}{734887028008160} a^{11} + \frac{1744336185689}{367443514004080} a^{9} - \frac{1}{16} a^{8} + \frac{5292141938519}{91860878501020} a^{7} - \frac{8530009414281}{91860878501020} a^{5} - \frac{1}{4} a^{4} + \frac{5745745006001}{45930439250510} a^{3} - \frac{10041237649461}{22965219625255} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16582815650400 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||