Normalized defining polynomial
\( x^{22} - 50 x^{20} + 655 x^{18} - 570 x^{16} - 26565 x^{14} + 17640 x^{12} + 429960 x^{10} + 832590 x^{8} + 466125 x^{6} - 52030 x^{4} - 64735 x^{2} + 9680 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-305589296948370493150063631057739257812500=-\,2^{2}\cdot 3^{20}\cdot 5^{21}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $76.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{6} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{5}{12} a$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{5}{12} a^{2}$, $\frac{1}{12} a^{15} + \frac{1}{12} a^{9} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{5}{12} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{16} + \frac{1}{12} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{12} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{264} a^{17} - \frac{1}{24} a^{16} - \frac{1}{44} a^{15} - \frac{1}{24} a^{14} - \frac{5}{264} a^{13} - \frac{5}{66} a^{11} - \frac{1}{24} a^{10} - \frac{1}{6} a^{8} - \frac{13}{132} a^{7} - \frac{1}{8} a^{6} + \frac{29}{132} a^{5} - \frac{1}{24} a^{4} - \frac{1}{8} a^{3} - \frac{7}{24} a^{2} - \frac{5}{12} a$, $\frac{1}{264} a^{18} + \frac{5}{264} a^{16} - \frac{1}{24} a^{15} + \frac{1}{44} a^{14} - \frac{1}{24} a^{13} + \frac{1}{132} a^{12} - \frac{1}{8} a^{11} - \frac{5}{24} a^{10} - \frac{1}{6} a^{9} - \frac{2}{11} a^{8} - \frac{1}{24} a^{7} + \frac{47}{264} a^{6} + \frac{3}{8} a^{5} + \frac{1}{6} a^{4} + \frac{1}{3} a^{3} - \frac{3}{8} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{264} a^{19} - \frac{1}{33} a^{15} + \frac{5}{264} a^{13} - \frac{1}{24} a^{12} - \frac{7}{88} a^{11} + \frac{1}{8} a^{10} - \frac{13}{132} a^{9} - \frac{1}{8} a^{8} - \frac{43}{264} a^{7} - \frac{1}{6} a^{6} + \frac{7}{22} a^{5} - \frac{3}{8} a^{4} + \frac{1}{3} a^{3} - \frac{1}{8} a^{2} + \frac{1}{12} a + \frac{1}{3}$, $\frac{1}{737885066712594451681272} a^{20} + \frac{149386253836188505628}{92235633339074306460159} a^{18} - \frac{7084457819214183537073}{184471266678148612920318} a^{16} + \frac{26438851257105890431591}{737885066712594451681272} a^{14} - \frac{1}{24} a^{13} - \frac{9318517338460456942619}{245961688904198150560424} a^{12} - \frac{1}{8} a^{11} - \frac{66272638040255673421529}{368942533356297225840636} a^{10} + \frac{1}{8} a^{9} + \frac{119447272851489146639887}{737885066712594451681272} a^{8} + \frac{1}{12} a^{7} + \frac{6365653658039834076283}{122980844452099075280212} a^{6} - \frac{3}{8} a^{5} + \frac{772827693275969560055}{8385057576279482405469} a^{4} - \frac{3}{8} a^{3} - \frac{1279849524225287399950}{2795019192093160801823} a^{2} - \frac{5}{12} a - \frac{2892290787552792964231}{8385057576279482405469}$, $\frac{1}{737885066712594451681272} a^{21} + \frac{149386253836188505628}{92235633339074306460159} a^{19} - \frac{193819677962563065031}{368942533356297225840636} a^{17} - \frac{18281455816384682397577}{737885066712594451681272} a^{15} - \frac{1}{24} a^{14} + \frac{16764755058109202001311}{737885066712594451681272} a^{13} - \frac{1}{24} a^{12} + \frac{23167976106725472236807}{368942533356297225840636} a^{11} - \frac{1}{8} a^{10} - \frac{126514416052709003920537}{737885066712594451681272} a^{9} - \frac{1}{6} a^{8} - \frac{16887158495192120656916}{92235633339074306460159} a^{7} - \frac{1}{24} a^{6} + \frac{14439284159490535029659}{368942533356297225840636} a^{5} - \frac{1}{8} a^{4} - \frac{1383098330237644790285}{33540230305117929621876} a^{3} + \frac{1}{3} a^{2} - \frac{8774143958118011055101}{33540230305117929621876} a + \frac{1}{3}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 25075662257500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |