Normalized defining polynomial
\( x^{22} - 15 x^{20} - 5446 x^{18} + 31824 x^{16} + 8932590 x^{14} + 25606542 x^{12} - 4324351728 x^{10} - 33068943924 x^{8} + 351858173934 x^{6} + 2196660144654 x^{4} - 6084443980476 x^{2} + 151269407160 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2237479871188499870613354915145778127677091451853959466606041823244675621995663555455152169522515054428160=-\,2^{71}\cdot 3^{21}\cdot 5\cdot 113\cdot 337^{8}\cdot 310501^{8}\cdot 11155561\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61{,}464.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 113, 337, 310501, 11155561$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{16}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{20} - \frac{2950442336895763005424408194123522436283571976756718491295}{57887320607168480035725746532474501690526662399435613406516} a^{18} - \frac{6802983247468734961180051083513272444057495133783090363073}{28943660303584240017862873266237250845263331199717806703258} a^{16} - \frac{425557197544732772075104745731868155907536334685750004690}{1315620922890192728084676057556238674784696872714445759239} a^{14} + \frac{4680923876592183645174394895491612475191851785022117984217}{28943660303584240017862873266237250845263331199717806703258} a^{12} + \frac{8662949786774333504986279301768253514329976689682665718719}{28943660303584240017862873266237250845263331199717806703258} a^{10} + \frac{7117784073178314594266630510011921114387750478976407924199}{14471830151792120008931436633118625422631665599858903351629} a^{8} - \frac{1664647229313214397188210012526689926626322350557904617836}{14471830151792120008931436633118625422631665599858903351629} a^{6} - \frac{9464108547766711189440050502515589419672609500930908153453}{28943660303584240017862873266237250845263331199717806703258} a^{4} - \frac{4883220340921872324178741201419862028547813404519471807901}{28943660303584240017862873266237250845263331199717806703258} a^{2} + \frac{811459757641502885736540144075227198835528418060766323699}{14471830151792120008931436633118625422631665599858903351629}$, $\frac{1}{57887320607168480035725746532474501690526662399435613406516} a^{21} - \frac{2950442336895763005424408194123522436283571976756718491295}{57887320607168480035725746532474501690526662399435613406516} a^{19} - \frac{6802983247468734961180051083513272444057495133783090363073}{28943660303584240017862873266237250845263331199717806703258} a^{17} - \frac{425557197544732772075104745731868155907536334685750004690}{1315620922890192728084676057556238674784696872714445759239} a^{15} + \frac{4680923876592183645174394895491612475191851785022117984217}{28943660303584240017862873266237250845263331199717806703258} a^{13} + \frac{8662949786774333504986279301768253514329976689682665718719}{28943660303584240017862873266237250845263331199717806703258} a^{11} + \frac{7117784073178314594266630510011921114387750478976407924199}{14471830151792120008931436633118625422631665599858903351629} a^{9} - \frac{1664647229313214397188210012526689926626322350557904617836}{14471830151792120008931436633118625422631665599858903351629} a^{7} - \frac{9464108547766711189440050502515589419672609500930908153453}{28943660303584240017862873266237250845263331199717806703258} a^{5} - \frac{4883220340921872324178741201419862028547813404519471807901}{28943660303584240017862873266237250845263331199717806703258} a^{3} + \frac{811459757641502885736540144075227198835528418060766323699}{14471830151792120008931436633118625422631665599858903351629} a$
Class group and class number
Not computed
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 16220160 |
| The 104 conjugacy class representatives for t22n44 are not computed |
| Character table for t22n44 is not computed |
Intermediate fields
| 11.11.118769262421915560193703211428553337469927424.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | $22$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $16{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.12.0.1}{12} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}$ | $22$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 113 | Data not computed | ||||||
| 337 | Data not computed | ||||||
| 310501 | Data not computed | ||||||
| 11155561 | Data not computed | ||||||