Normalized defining polynomial
\( x^{22} - x^{21} - 21 x^{20} + 20 x^{19} + 40 x^{18} - 672 x^{17} + 2292 x^{16} + 8442 x^{15} - 18060 x^{14} - 2615 x^{13} + 37889 x^{12} - 279954 x^{11} + 1556 x^{10} + 243895 x^{9} - 1841640 x^{8} - 428373 x^{7} + 1338348 x^{6} - 3568377 x^{5} - 1615535 x^{4} + 2039225 x^{3} - 424269 x^{2} + 24314 x - 281 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2016889359859245254790419964981079101562500=-\,2^{2}\cdot 3^{21}\cdot 5^{20}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{10} - \frac{1}{5} a^{7} - \frac{1}{5} a^{5} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} + \frac{2}{5} a^{5} - \frac{1}{5} a^{3} + \frac{2}{5}$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{10} + \frac{2}{5} a^{5} - \frac{2}{5}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{10} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{10} a^{17} - \frac{1}{10} a^{15} - \frac{1}{10} a^{14} - \frac{1}{10} a^{12} - \frac{1}{5} a^{10} + \frac{1}{10} a^{9} - \frac{1}{2} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} + \frac{2}{5} a^{5} + \frac{1}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{3}{10}$, $\frac{1}{20} a^{18} - \frac{1}{20} a^{17} + \frac{1}{20} a^{16} - \frac{1}{10} a^{15} + \frac{1}{20} a^{14} + \frac{1}{20} a^{13} + \frac{1}{20} a^{12} - \frac{1}{10} a^{11} - \frac{7}{20} a^{10} + \frac{1}{5} a^{9} + \frac{1}{10} a^{8} - \frac{1}{5} a^{7} - \frac{1}{4} a^{6} - \frac{9}{20} a^{5} + \frac{1}{5} a^{4} - \frac{7}{20} a^{3} + \frac{1}{4} a^{2} + \frac{3}{10} a - \frac{1}{20}$, $\frac{1}{40} a^{19} - \frac{1}{40} a^{16} - \frac{1}{40} a^{15} + \frac{1}{20} a^{14} - \frac{1}{20} a^{13} - \frac{1}{40} a^{12} - \frac{1}{40} a^{11} - \frac{19}{40} a^{10} + \frac{3}{20} a^{9} + \frac{1}{20} a^{8} + \frac{11}{40} a^{7} - \frac{1}{20} a^{6} + \frac{11}{40} a^{5} - \frac{3}{40} a^{4} + \frac{1}{20} a^{3} + \frac{11}{40} a^{2} - \frac{3}{40} a - \frac{1}{8}$, $\frac{1}{880} a^{20} + \frac{1}{880} a^{19} - \frac{1}{44} a^{18} - \frac{21}{880} a^{17} + \frac{9}{440} a^{16} - \frac{87}{880} a^{15} - \frac{3}{220} a^{14} + \frac{57}{880} a^{13} + \frac{9}{440} a^{12} + \frac{1}{220} a^{11} + \frac{39}{880} a^{10} - \frac{1}{22} a^{9} - \frac{147}{880} a^{8} + \frac{409}{880} a^{7} + \frac{57}{176} a^{6} + \frac{43}{220} a^{5} - \frac{249}{880} a^{4} + \frac{233}{880} a^{3} - \frac{93}{220} a^{2} + \frac{21}{110} a + \frac{71}{880}$, $\frac{1}{253054139523888648724987043262228203093685444950860874020640} a^{21} - \frac{5614152149318292023696022074073463377585699041071948507}{15815883720243040545311690203889262693355340309428804626290} a^{20} - \frac{2648087057637504393180102414816692595023110706174220530869}{253054139523888648724987043262228203093685444950860874020640} a^{19} - \frac{142223731922953948928091035729708771000477557669364752041}{253054139523888648724987043262228203093685444950860874020640} a^{18} + \frac{3694292184175470215189513941857166708474798093977407455887}{253054139523888648724987043262228203093685444950860874020640} a^{17} - \frac{5056782157143043755542212293076400441658573722474695034929}{253054139523888648724987043262228203093685444950860874020640} a^{16} - \frac{25079608820053804569132056061182912251627173767804529065157}{253054139523888648724987043262228203093685444950860874020640} a^{15} + \frac{4978198269944716048963474421551341012697450645896592180381}{253054139523888648724987043262228203093685444950860874020640} a^{14} + \frac{16780400548040597180700621056710779954179144796600534973809}{253054139523888648724987043262228203093685444950860874020640} a^{13} + \frac{8899474925283666537782883358658982914924595518806100074917}{126527069761944324362493521631114101546842722475430437010320} a^{12} + \frac{16379236308707299561372478922970897224839256833204928618611}{253054139523888648724987043262228203093685444950860874020640} a^{11} - \frac{99906943730235846494491997091679296697186549995606755038279}{253054139523888648724987043262228203093685444950860874020640} a^{10} + \frac{14857027069545517395177212114784153626243413549218207006757}{253054139523888648724987043262228203093685444950860874020640} a^{9} - \frac{15806416794823979903338119724584216588485883859450686582713}{63263534880972162181246760815557050773421361237715218505160} a^{8} + \frac{23415697554223516700626134919657675832264309950921422585133}{63263534880972162181246760815557050773421361237715218505160} a^{7} + \frac{101749986649930429096548595658221180560463128438776472886359}{253054139523888648724987043262228203093685444950860874020640} a^{6} + \frac{15108341331124256972675316346040228512295226499757798892179}{253054139523888648724987043262228203093685444950860874020640} a^{5} - \frac{43062279277835862086257895522789660063623485383493434117191}{126527069761944324362493521631114101546842722475430437010320} a^{4} + \frac{95030464471921881735921245215293226038540229852104033156587}{253054139523888648724987043262228203093685444950860874020640} a^{3} + \frac{8639623868627419847256830658245858819602287482568685155101}{63263534880972162181246760815557050773421361237715218505160} a^{2} + \frac{64561077943333084820743133562520952146579906460837932701871}{253054139523888648724987043262228203093685444950860874020640} a - \frac{353746161205904853627921836091898062345140919160204641289}{4600984354979793613181582604767785510794280817288379527648}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56346154724500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |