Normalized defining polynomial
\( x^{22} - 7 x^{21} + 8 x^{20} + 58 x^{19} - 243 x^{18} + 346 x^{17} + 333 x^{16} - 2299 x^{15} + 3786 x^{14} - 920 x^{13} - 7580 x^{12} + 14118 x^{11} - 5659 x^{10} - 17342 x^{9} + 33608 x^{8} - 19265 x^{7} - 19737 x^{6} + 44371 x^{5} - 35838 x^{4} + 14864 x^{3} - 2259 x^{2} - 482 x + 139 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{22410356993839193044087548333582360836909753} a^{21} + \frac{4940740233644329625536477227771304209154839}{22410356993839193044087548333582360836909753} a^{20} - \frac{5031742894746528021984502884218731697753803}{22410356993839193044087548333582360836909753} a^{19} - \frac{8719762375223667057392832505969472825597122}{22410356993839193044087548333582360836909753} a^{18} + \frac{6070247365525417162872489694530291386941979}{22410356993839193044087548333582360836909753} a^{17} - \frac{2285043639256299580228808573996572109349902}{22410356993839193044087548333582360836909753} a^{16} - \frac{2225002098487938537439486169219192106385065}{22410356993839193044087548333582360836909753} a^{15} + \frac{6134142392237308565762992638784101771634227}{22410356993839193044087548333582360836909753} a^{14} - \frac{3036989824735622033636971447256628528726814}{22410356993839193044087548333582360836909753} a^{13} - \frac{369191318469791082055681115309717886840134}{22410356993839193044087548333582360836909753} a^{12} + \frac{1632063793464250784216912359992591090082931}{22410356993839193044087548333582360836909753} a^{11} - \frac{6950792530050971477394385555560966984710271}{22410356993839193044087548333582360836909753} a^{10} + \frac{5628914714739912024953053025379934987185529}{22410356993839193044087548333582360836909753} a^{9} - \frac{5990669897096108862501674399527480413649716}{22410356993839193044087548333582360836909753} a^{8} + \frac{2240029729293320293067395912434750055302844}{22410356993839193044087548333582360836909753} a^{7} - \frac{7505753821862960538216516694946497057545503}{22410356993839193044087548333582360836909753} a^{6} - \frac{2432863357293003233776381624989267208680021}{22410356993839193044087548333582360836909753} a^{5} + \frac{8706284545140564689931910115976121567392022}{22410356993839193044087548333582360836909753} a^{4} + \frac{109036535011339186246601056490432668575576}{22410356993839193044087548333582360836909753} a^{3} + \frac{7726459001079883708859159200021631575749782}{22410356993839193044087548333582360836909753} a^{2} + \frac{7649380704379166061889618841039562275114943}{22410356993839193044087548333582360836909753} a - \frac{56751760173105822115347798726764964627302}{161225589883735201756025527579729214654027}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109627633.006 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||