Normalized defining polynomial
\( x^{22} - 10 x^{21} + 42 x^{20} - 88 x^{19} + 26 x^{18} + 460 x^{17} - 1667 x^{16} + 3076 x^{15} - 2650 x^{14} - 1948 x^{13} + 9671 x^{12} - 13923 x^{11} + 7597 x^{10} + 7283 x^{9} - 18181 x^{8} + 15029 x^{7} - 2411 x^{6} - 6693 x^{5} + 6866 x^{4} - 3122 x^{3} + 705 x^{2} - 65 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{924207180721024804619} a^{21} - \frac{430113092941902278765}{924207180721024804619} a^{20} + \frac{39805276420178777666}{924207180721024804619} a^{19} + \frac{1096509094126161134}{3336488017043410847} a^{18} + \frac{210450717533563775796}{924207180721024804619} a^{17} + \frac{409804425824296184373}{924207180721024804619} a^{16} + \frac{59398931468727499186}{924207180721024804619} a^{15} + \frac{105033591465895272448}{924207180721024804619} a^{14} + \frac{286072638022791685140}{924207180721024804619} a^{13} + \frac{4459444447921199296}{924207180721024804619} a^{12} - \frac{382082488020992242483}{924207180721024804619} a^{11} + \frac{383106228904386282634}{924207180721024804619} a^{10} + \frac{304523984406824366237}{924207180721024804619} a^{9} + \frac{112228244840961530366}{924207180721024804619} a^{8} - \frac{117474817764336631226}{924207180721024804619} a^{7} + \frac{448484912860046135769}{924207180721024804619} a^{6} - \frac{311122115523088764560}{924207180721024804619} a^{5} + \frac{351381790637328911629}{924207180721024804619} a^{4} + \frac{368294505304384090745}{924207180721024804619} a^{3} - \frac{186701951637185652713}{924207180721024804619} a^{2} - \frac{426715091785121050728}{924207180721024804619} a + \frac{428982538929086872848}{924207180721024804619}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88859950.687 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||