Normalized defining polynomial
\( x^{22} - 7 x^{21} + 10 x^{20} + 16 x^{19} - 10 x^{18} - 184 x^{17} + 468 x^{16} - 58 x^{15} - 1272 x^{14} + 816 x^{13} + 2227 x^{12} - 2216 x^{11} - 2463 x^{10} + 2895 x^{9} + 2624 x^{8} - 1329 x^{7} - 2547 x^{6} - 368 x^{5} + 990 x^{4} + 174 x^{3} - 144 x^{2} + 9 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{4424101404174618201523345085363539} a^{21} - \frac{691382121286328625533238664103695}{4424101404174618201523345085363539} a^{20} + \frac{1041234757697913036561106350302376}{4424101404174618201523345085363539} a^{19} - \frac{1266452013592980192074412340045539}{4424101404174618201523345085363539} a^{18} - \frac{2105637670922554449697297216452030}{4424101404174618201523345085363539} a^{17} + \frac{188284558542529736726450996835421}{4424101404174618201523345085363539} a^{16} + \frac{986981131354783612138332428826684}{4424101404174618201523345085363539} a^{15} + \frac{256798703262186979700866914659574}{4424101404174618201523345085363539} a^{14} - \frac{183456965237564782698525792130215}{4424101404174618201523345085363539} a^{13} + \frac{39377276098097838915196917455249}{4424101404174618201523345085363539} a^{12} + \frac{1789055472657409696997834200270290}{4424101404174618201523345085363539} a^{11} - \frac{256445835042732163567316573389179}{4424101404174618201523345085363539} a^{10} - \frac{1086228336215554733512571073934921}{4424101404174618201523345085363539} a^{9} + \frac{748458587873644670262441657182658}{4424101404174618201523345085363539} a^{8} + \frac{754080560019927368543198534129699}{4424101404174618201523345085363539} a^{7} - \frac{1770759832750966974684942533841258}{4424101404174618201523345085363539} a^{6} - \frac{1047042955706215630626300697536496}{4424101404174618201523345085363539} a^{5} - \frac{1767151795772782233627004359641187}{4424101404174618201523345085363539} a^{4} - \frac{1497428498562335843477930539222430}{4424101404174618201523345085363539} a^{3} + \frac{729105122022644672518695785784905}{4424101404174618201523345085363539} a^{2} + \frac{974523279890585833199230873202296}{4424101404174618201523345085363539} a - \frac{1206824180367048953780211475236142}{4424101404174618201523345085363539}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88229828.8508 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||