Normalized defining polynomial
\( x^{22} - 8 x^{21} + 12 x^{20} + 46 x^{19} - 109 x^{18} - 114 x^{17} + 165 x^{16} + 756 x^{15} + 9 x^{14} - 3299 x^{13} - 666 x^{12} + 8067 x^{11} + 4331 x^{10} - 16061 x^{9} - 4342 x^{8} + 13658 x^{7} + 3196 x^{6} - 4458 x^{5} - 1074 x^{4} + 552 x^{3} + 42 x^{2} - 12 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{47} a^{19} - \frac{10}{47} a^{18} + \frac{22}{47} a^{17} - \frac{8}{47} a^{16} - \frac{12}{47} a^{15} + \frac{14}{47} a^{14} + \frac{9}{47} a^{13} - \frac{9}{47} a^{12} - \frac{5}{47} a^{11} - \frac{6}{47} a^{10} + \frac{10}{47} a^{9} + \frac{9}{47} a^{8} - \frac{15}{47} a^{7} - \frac{19}{47} a^{6} - \frac{21}{47} a^{5} - \frac{17}{47} a^{4} - \frac{16}{47} a^{3} - \frac{19}{47} a^{2} + \frac{7}{47} a - \frac{3}{47}$, $\frac{1}{47} a^{20} + \frac{16}{47} a^{18} - \frac{23}{47} a^{17} + \frac{2}{47} a^{16} - \frac{12}{47} a^{15} + \frac{8}{47} a^{14} - \frac{13}{47} a^{13} - \frac{1}{47} a^{12} - \frac{9}{47} a^{11} - \frac{3}{47} a^{10} + \frac{15}{47} a^{9} - \frac{19}{47} a^{8} + \frac{19}{47} a^{7} - \frac{23}{47} a^{6} + \frac{8}{47} a^{5} + \frac{2}{47} a^{4} + \frac{9}{47} a^{3} + \frac{5}{47} a^{2} + \frac{20}{47} a + \frac{17}{47}$, $\frac{1}{9711071898270111962114145139459} a^{21} + \frac{12409194595077717953795161724}{9711071898270111962114145139459} a^{20} - \frac{102445492111362100539233691779}{9711071898270111962114145139459} a^{19} + \frac{3789979012024775421458135690998}{9711071898270111962114145139459} a^{18} + \frac{548658800226955923303033614468}{9711071898270111962114145139459} a^{17} + \frac{2445772327345159633908457750098}{9711071898270111962114145139459} a^{16} + \frac{240027339767097091850074499327}{9711071898270111962114145139459} a^{15} - \frac{4846834416888365616496036275490}{9711071898270111962114145139459} a^{14} - \frac{2669511263425040413390874988253}{9711071898270111962114145139459} a^{13} + \frac{799863178110626933555986683462}{9711071898270111962114145139459} a^{12} + \frac{4042152624624629896789056711060}{9711071898270111962114145139459} a^{11} - \frac{1004366224527446966023982610768}{9711071898270111962114145139459} a^{10} - \frac{1070951396009082773571098288797}{9711071898270111962114145139459} a^{9} - \frac{1277234637679147040849767214717}{9711071898270111962114145139459} a^{8} + \frac{56697436153753404540233199058}{9711071898270111962114145139459} a^{7} + \frac{627923856297096651663616511879}{9711071898270111962114145139459} a^{6} - \frac{2580440228024436982144645484418}{9711071898270111962114145139459} a^{5} - \frac{3203432267319849599036437741254}{9711071898270111962114145139459} a^{4} - \frac{3217112886403073594100559047505}{9711071898270111962114145139459} a^{3} + \frac{576758795105239083278340700874}{9711071898270111962114145139459} a^{2} - \frac{583957314460705390176370004315}{9711071898270111962114145139459} a - \frac{3665369175660647953742522655697}{9711071898270111962114145139459}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106197776.635 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||