Normalized defining polynomial
\( x^{22} - 9 x^{21} + 23 x^{20} + 32 x^{19} - 251 x^{18} + 219 x^{17} + 915 x^{16} - 1739 x^{15} - 1820 x^{14} + 6548 x^{13} + 969 x^{12} - 16878 x^{11} + 9906 x^{10} + 22070 x^{9} - 29522 x^{8} - 3288 x^{7} + 25694 x^{6} - 12946 x^{5} - 3524 x^{4} + 4687 x^{3} - 1081 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{154786433280020486873} a^{21} - \frac{64849291404396475701}{154786433280020486873} a^{20} + \frac{76304523266753349259}{154786433280020486873} a^{19} + \frac{49913474583088740990}{154786433280020486873} a^{18} - \frac{20149473244998771679}{154786433280020486873} a^{17} + \frac{48440821994038416319}{154786433280020486873} a^{16} - \frac{51797720953592989622}{154786433280020486873} a^{15} - \frac{74609324324817045258}{154786433280020486873} a^{14} - \frac{15469327581241633802}{154786433280020486873} a^{13} + \frac{35600507997238845194}{154786433280020486873} a^{12} - \frac{58853820601336126532}{154786433280020486873} a^{11} - \frac{22588793237784827589}{154786433280020486873} a^{10} - \frac{581582023586344165}{3293328367660010359} a^{9} - \frac{64622701132867921900}{154786433280020486873} a^{8} + \frac{46491135760864079394}{154786433280020486873} a^{7} - \frac{45097091121473444800}{154786433280020486873} a^{6} - \frac{38500596827840246849}{154786433280020486873} a^{5} + \frac{66941311306586889409}{154786433280020486873} a^{4} + \frac{30738010108758734503}{154786433280020486873} a^{3} + \frac{1928540178966493510}{154786433280020486873} a^{2} + \frac{1519788557430540161}{154786433280020486873} a + \frac{65972366918879625353}{154786433280020486873}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 109815062.576 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||