Normalized defining polynomial
\( x^{22} - x^{21} + 8 x^{20} + x^{19} - 10 x^{18} + 79 x^{17} - 234 x^{16} + 293 x^{15} - 293 x^{14} - 441 x^{13} + 1283 x^{12} - 1700 x^{11} + 1629 x^{10} + 2222 x^{9} - 4511 x^{8} - 315 x^{7} + 2661 x^{6} - 55 x^{5} - 669 x^{4} - 21 x^{3} + 68 x^{2} + 7 x - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-178176446876650757881387571453423=-\,23^{20}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} - \frac{20}{47} a^{19} - \frac{1}{47} a^{18} - \frac{2}{47} a^{17} - \frac{6}{47} a^{16} - \frac{16}{47} a^{15} + \frac{7}{47} a^{14} - \frac{8}{47} a^{13} + \frac{3}{47} a^{12} - \frac{18}{47} a^{11} - \frac{12}{47} a^{10} - \frac{16}{47} a^{9} + \frac{21}{47} a^{8} + \frac{10}{47} a^{7} + \frac{8}{47} a^{6} + \frac{14}{47} a^{5} - \frac{12}{47} a^{4} - \frac{9}{47} a^{3} - \frac{13}{47} a^{2} + \frac{14}{47} a + \frac{18}{47}$, $\frac{1}{425898053226600832867712659} a^{21} + \frac{1989007593600691286645204}{425898053226600832867712659} a^{20} + \frac{117498688594178422693716686}{425898053226600832867712659} a^{19} + \frac{170578250013418609222668994}{425898053226600832867712659} a^{18} - \frac{144887019117811381430438995}{425898053226600832867712659} a^{17} + \frac{200481061476078625216497758}{425898053226600832867712659} a^{16} + \frac{16268887757075726206937202}{425898053226600832867712659} a^{15} + \frac{211477180491444648506237526}{425898053226600832867712659} a^{14} + \frac{209231164728626823228683577}{425898053226600832867712659} a^{13} - \frac{127130144962374466450614865}{425898053226600832867712659} a^{12} - \frac{9907190975584665200025121}{425898053226600832867712659} a^{11} - \frac{64712730362462966748049796}{425898053226600832867712659} a^{10} + \frac{201879247195669718534598846}{425898053226600832867712659} a^{9} + \frac{144060212589328123855406947}{425898053226600832867712659} a^{8} + \frac{766897244037297687200649}{425898053226600832867712659} a^{7} + \frac{1812470994946095783746095}{9061660706948953890802397} a^{6} + \frac{38386463051149692429821805}{425898053226600832867712659} a^{5} + \frac{27534034139214001710509574}{425898053226600832867712659} a^{4} - \frac{21151245889054238818044735}{425898053226600832867712659} a^{3} + \frac{46019853345228850178033522}{425898053226600832867712659} a^{2} - \frac{122817633417966463324369836}{425898053226600832867712659} a - \frac{77579966625758431812503264}{425898053226600832867712659}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106236735.142 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | $22$ | R | $22$ | $22$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{2}$ | $22$ | $22$ | R | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||