Normalized defining polynomial
\( x^{22} - 34 x^{20} - 135 x^{19} + 730 x^{18} + 2955 x^{17} - 5775 x^{16} - 27900 x^{15} + 10515 x^{14} + 131175 x^{13} + 47157 x^{12} - 367890 x^{11} - 324513 x^{10} + 592530 x^{9} + 850740 x^{8} - 437700 x^{7} - 1134615 x^{6} + 9675 x^{5} + 736120 x^{4} + 120945 x^{3} - 184954 x^{2} - 20295 x + 15796 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-15646172003756569249283257910156250000000000=-\,2^{10}\cdot 3^{20}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{10} a^{17} - \frac{1}{2} a^{16} + \frac{1}{10} a^{15} - \frac{1}{2} a^{13} - \frac{1}{5} a^{12} - \frac{1}{2} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} + \frac{3}{10} a^{2} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{20} a^{18} - \frac{1}{5} a^{16} + \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{7}{20} a^{13} - \frac{1}{4} a^{12} - \frac{7}{20} a^{11} + \frac{3}{10} a^{8} + \frac{1}{4} a^{7} - \frac{9}{20} a^{6} + \frac{3}{20} a^{3} - \frac{1}{2} a^{2} - \frac{7}{20} a$, $\frac{1}{40} a^{19} - \frac{1}{40} a^{18} + \frac{9}{40} a^{16} - \frac{2}{5} a^{15} - \frac{3}{10} a^{14} - \frac{9}{20} a^{13} + \frac{1}{4} a^{12} - \frac{13}{40} a^{11} + \frac{3}{10} a^{10} + \frac{3}{20} a^{9} - \frac{1}{40} a^{8} + \frac{1}{4} a^{7} - \frac{11}{40} a^{6} - \frac{2}{5} a^{5} + \frac{3}{40} a^{4} - \frac{13}{40} a^{3} - \frac{1}{8} a^{2} - \frac{13}{40} a + \frac{3}{10}$, $\frac{1}{80} a^{20} - \frac{1}{80} a^{18} + \frac{1}{80} a^{17} + \frac{33}{80} a^{16} - \frac{9}{20} a^{15} + \frac{1}{8} a^{14} + \frac{2}{5} a^{13} + \frac{13}{80} a^{12} + \frac{39}{80} a^{11} + \frac{17}{40} a^{10} - \frac{7}{16} a^{9} - \frac{31}{80} a^{8} + \frac{31}{80} a^{7} + \frac{13}{80} a^{6} - \frac{21}{80} a^{5} + \frac{3}{8} a^{4} + \frac{11}{40} a^{3} - \frac{1}{40} a^{2} - \frac{1}{80} a + \frac{7}{20}$, $\frac{1}{1550815848876690124676095116062756013735996451617100960} a^{21} + \frac{855493488575277962354056991101651289147054494322473}{310163169775338024935219023212551202747199290323420192} a^{20} - \frac{9787132538180369025084958342527489291208953212580237}{1550815848876690124676095116062756013735996451617100960} a^{19} - \frac{921264698541707044797313645326428143942930976784661}{38770396221917253116902377901568900343399911290427524} a^{18} - \frac{33070419207854182794187968079642937078465052546141729}{775407924438345062338047558031378006867998225808550480} a^{17} - \frac{144639425006618632747525475144768702853152849481940387}{1550815848876690124676095116062756013735996451617100960} a^{16} + \frac{55259852584751549678435418400409091628652641632342019}{155081584887669012467609511606275601373599645161710096} a^{15} - \frac{368104967042763718009012505946048657052849509305684963}{775407924438345062338047558031378006867998225808550480} a^{14} - \frac{40480323440510778451423887008005285637027581174850887}{310163169775338024935219023212551202747199290323420192} a^{13} - \frac{28956120479926674437739579181280996995094134469351839}{96925990554793132792255944753922250858499778226068810} a^{12} + \frac{269586658720771374398917599330262380197619290706265521}{1550815848876690124676095116062756013735996451617100960} a^{11} + \frac{1221660316417965585044251187181482497009289003542187}{310163169775338024935219023212551202747199290323420192} a^{10} + \frac{251754085896743749600198915072551646586674003009648529}{775407924438345062338047558031378006867998225808550480} a^{9} - \frac{1274029272195921393682730076294819961457695857563281}{38770396221917253116902377901568900343399911290427524} a^{8} + \frac{41660892135615196212458560380639816410637020351410917}{96925990554793132792255944753922250858499778226068810} a^{7} + \frac{48215716405102801985239245387964253255872893173226283}{96925990554793132792255944753922250858499778226068810} a^{6} + \frac{63419523691846326952152454433855266571764616668709657}{310163169775338024935219023212551202747199290323420192} a^{5} + \frac{119405710690593524992090775751545481476817400472623}{17622907373598751416773808137076772883363596041103420} a^{4} + \frac{348098021711678400222108623149549008670525563658170}{881145368679937570838690406853838644168179802055171} a^{3} + \frac{50974419840684233778857972528696762816387550817919731}{140983258988790011334190465096614183066908768328827360} a^{2} + \frac{4476852547549256544633981892640199072326959400354389}{28196651797758002266838093019322836613381753665765472} a + \frac{370082095562489304364764164600240798805584673958253}{7049162949439500566709523254830709153345438416441368}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 390725843673000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 5.11.10.1 | $x^{11} - 5$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |