Normalized defining polynomial
\( x^{22} - 44 x^{20} - 88 x^{19} + 660 x^{18} + 2618 x^{17} - 3058 x^{16} - 26224 x^{15} + 17820 x^{14} + 233288 x^{13} - 204908 x^{12} - 2903728 x^{11} - 3647732 x^{10} + 10497784 x^{9} + 34411080 x^{8} + 26459576 x^{7} - 25406876 x^{6} - 57398352 x^{5} - 33631884 x^{4} - 3176272 x^{3} + 1810160 x^{2} - 799480 x - 456124 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[12, 5]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-103740790335738088504050897483737522470125568=-\,2^{28}\cdot 7^{15}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $100.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{2} a^{19}$, $\frac{1}{4} a^{20} - \frac{1}{2} a^{9}$, $\frac{1}{826510845644513573086817392176868241542330645697794665958461319504615068} a^{21} - \frac{43228679763796144983824824309077757964629469320543734348374614384826939}{413255422822256786543408696088434120771165322848897332979230659752307534} a^{20} - \frac{87840877383300969829250357069583598367364241213705092778062271478000885}{413255422822256786543408696088434120771165322848897332979230659752307534} a^{19} - \frac{2616388888538507418659275939296498914610115518560591636191298623006896}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{18} - \frac{14695511908720326420455974361693674439992764930462039379874689350668923}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{17} - \frac{5945056515580292411562167017584751290033496452059274985231207684800007}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{16} + \frac{3244483018080481701393881641510938131434122161176367939345683189697868}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{15} - \frac{38112870756470906857728010438269864540638313823687987866391924180257689}{413255422822256786543408696088434120771165322848897332979230659752307534} a^{14} + \frac{14057829008968358974811646439682302838850927546241527241973393099358880}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{13} - \frac{24550061971335809633827859083761220475831216293357996851587231624850203}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{12} - \frac{12255528601122620211348599298588061307978074165148172851142254660550051}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{11} - \frac{42297885179064982461955400361857467012075030224115700136196242167071463}{413255422822256786543408696088434120771165322848897332979230659752307534} a^{10} + \frac{102569000436094639357093884452236272381191134426359557942556731042651429}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{9} - \frac{20636956676071056478385772330477258336556929223988483291923493444979910}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{8} - \frac{89320388918973827622619814321539862501270318511746313968878740260759804}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{7} - \frac{87912918023869436269829971060552353968296117114170180082690543398051200}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{6} + \frac{16721374422469716319564418486439377455771063033385682033719842270289913}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{5} + \frac{8674261511501220680016420008565870408137697885388822985489626321886561}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{4} - \frac{3591366686056792189762142463789319680218644308120198437334311025408708}{68875903803709464423901449348072353461860887141482888829871776625384589} a^{3} - \frac{76500632233053738681973727165696892404207607285671839805890015258218862}{206627711411128393271704348044217060385582661424448666489615329876153767} a^{2} + \frac{11911246203441513167271535471338672531160415911882296005711191508228141}{68875903803709464423901449348072353461860887141482888829871776625384589} a - \frac{93845290055797121756302766348526209882115619693870726116719175714553774}{206627711411128393271704348044217060385582661424448666489615329876153767}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $16$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 743017589907000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |