Normalized defining polynomial
\( x^{22} - 10 x^{21} + 30 x^{20} - 25 x^{19} + 325 x^{18} - 3180 x^{17} + 11340 x^{16} - 9885 x^{15} - 62595 x^{14} + 261085 x^{13} - 416755 x^{12} - 26220 x^{11} + 1674680 x^{10} - 3966065 x^{9} + 2285520 x^{8} + 10714185 x^{7} - 18884505 x^{6} - 17519370 x^{5} + 28233430 x^{4} + 23392400 x^{3} - 5493645 x^{2} - 6705550 x - 1073090 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(916767890845111479450190893173217773437500=2^{2}\cdot 3^{21}\cdot 5^{21}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{21} - \frac{1169799043324242239267524318057553127274933805462752925587657203137647618138921391}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{20} - \frac{4395999088694751814300985204884289966434679739701678933614791183572667680457931604}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{19} - \frac{5326068095674590307661440834901313572040953551816425421601865731098306980409679945}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{18} + \frac{3525719650240308914699932685426894346634072977024928436472675007444938909296401252}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{17} + \frac{2272247469658035704176230125625064320518212295934827009151706650904166570104982244}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{16} - \frac{2815971759599201878510630902380633082994737717795950196011676380240578310147404430}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{15} + \frac{5902115491252984048051563844671482650552303165873617495287443349380822842429036238}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{14} + \frac{1083143941322218587385075823009224607577164714305194752676986530440591555055967665}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{13} - \frac{777331718825004441634096023951025500114375371753813964699433685129414119578874026}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{12} - \frac{3833262558620351362376010568187090653526511659753159065066499895538574365086002697}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{11} + \frac{548174447772675010369858108383561408918637284703072303564818804330388592466238575}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{10} - \frac{1377289843857107746231687518440547876366876705857893663858552766312566811379655213}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{9} - \frac{3104112094059626317410576912513146085034072713475404042884355672156488724154369417}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{8} + \frac{5732725229936391900906468343889741601938412203162508119608503199117969937239693369}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{7} - \frac{4010398083435054619748483478310625459330045388462897839567457655891387502057795517}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{6} - \frac{5875938016871700555627334305135054343925552939019735265712250088936928600290503014}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{5} - \frac{3425760015702128343422463757555038984838374586217378841030468801766044478923080726}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{4} + \frac{138622119465147025373766623748610476261066967863834439892404421889928810216136774}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{3} - \frac{3891470922993885662566486515160413990936553222388372901084110933307759781462218209}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a^{2} - \frac{5485623616510435737430139733992791737206273556328842582277786012010789857410692577}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071} a - \frac{4753018587239428174142411654229069010552276051974352394167266065073650293855076134}{11949789919160528943430317703315069913096204633894138806439375683095774734537937071}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12814496186300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |