Normalized defining polynomial
\( x^{22} + 19 x^{20} - 204 x^{18} - 1314 x^{16} + 11139 x^{14} + 10593 x^{12} - 133681 x^{10} + 103014 x^{8} + 141613 x^{6} - 2116 x^{4} - 12142 x^{2} - 1297 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73282392826432034388017521578469450842112=2^{22}\cdot 1297^{11}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{145} a^{18} + \frac{16}{145} a^{16} + \frac{32}{145} a^{14} - \frac{56}{145} a^{12} - \frac{10}{29} a^{10} + \frac{59}{145} a^{8} - \frac{13}{145} a^{6} + \frac{39}{145} a^{4} + \frac{54}{145} a^{2} - \frac{47}{145}$, $\frac{1}{145} a^{19} + \frac{16}{145} a^{17} + \frac{32}{145} a^{15} - \frac{56}{145} a^{13} - \frac{10}{29} a^{11} + \frac{59}{145} a^{9} - \frac{13}{145} a^{7} + \frac{39}{145} a^{5} + \frac{54}{145} a^{3} - \frac{47}{145} a$, $\frac{1}{10616378192504101953965064625} a^{20} + \frac{547119667982532841717674}{2123275638500820390793012925} a^{18} - \frac{2810188531906618213482371459}{10616378192504101953965064625} a^{16} - \frac{4347989555703680076024534173}{10616378192504101953965064625} a^{14} - \frac{2624993597111184969870965959}{10616378192504101953965064625} a^{12} - \frac{1185726635872030025624986266}{10616378192504101953965064625} a^{10} - \frac{3818139121901589160799220172}{10616378192504101953965064625} a^{8} - \frac{2155756449926248865490555483}{10616378192504101953965064625} a^{6} - \frac{423715767897633784685296059}{2123275638500820390793012925} a^{4} + \frac{1866566079096849673265457964}{10616378192504101953965064625} a^{2} - \frac{2740872222198353504507382403}{10616378192504101953965064625}$, $\frac{1}{10616378192504101953965064625} a^{21} + \frac{547119667982532841717674}{2123275638500820390793012925} a^{19} - \frac{2810188531906618213482371459}{10616378192504101953965064625} a^{17} - \frac{4347989555703680076024534173}{10616378192504101953965064625} a^{15} - \frac{2624993597111184969870965959}{10616378192504101953965064625} a^{13} - \frac{1185726635872030025624986266}{10616378192504101953965064625} a^{11} - \frac{3818139121901589160799220172}{10616378192504101953965064625} a^{9} - \frac{2155756449926248865490555483}{10616378192504101953965064625} a^{7} - \frac{423715767897633784685296059}{2123275638500820390793012925} a^{5} + \frac{1866566079096849673265457964}{10616378192504101953965064625} a^{3} - \frac{2740872222198353504507382403}{10616378192504101953965064625} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1444627808590 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 1297 | Data not computed | ||||||