Normalized defining polynomial
\( x^{22} - 11 x^{20} - 55 x^{18} + 737 x^{16} + 946 x^{14} - 14982 x^{12} - 7326 x^{10} + 87538 x^{8} + 66957 x^{6} - 46255 x^{4} - 16203 x^{2} - 275 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(69526760417787459327044047673994136556404736=2^{38}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.36$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{8} - \frac{1}{4} a^{5} + \frac{1}{4}$, $\frac{1}{8} a^{14} - \frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{1}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{8} a^{16} - \frac{1}{4} a^{8} + \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{8} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} + \frac{1}{16} a^{2} - \frac{1}{16}$, $\frac{1}{16} a^{19} - \frac{1}{16} a^{17} - \frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{16} a^{3} + \frac{3}{16} a + \frac{1}{4}$, $\frac{1}{28923755142779487568} a^{20} - \frac{418164799294210605}{28923755142779487568} a^{18} + \frac{855694572788595133}{14461877571389743784} a^{16} - \frac{593739755262534505}{14461877571389743784} a^{14} - \frac{230241872764324357}{3615469392847435946} a^{12} - \frac{113824959105512345}{3615469392847435946} a^{10} + \frac{2270308601955299895}{14461877571389743784} a^{8} + \frac{825746940585574473}{14461877571389743784} a^{6} + \frac{11874057001976373591}{28923755142779487568} a^{4} - \frac{12224898752837794811}{28923755142779487568} a^{2} + \frac{1077755658894819699}{3615469392847435946}$, $\frac{1}{144618775713897437840} a^{21} - \frac{4033634192141646551}{144618775713897437840} a^{19} - \frac{23801003090878071}{1807734696423717973} a^{17} + \frac{3021729637584901441}{72309387856948718920} a^{15} + \frac{1347250950895069259}{36154693928474359460} a^{13} - \frac{2035384614634742663}{36154693928474359460} a^{11} - \frac{8576099576587007943}{72309387856948718920} a^{9} + \frac{4441216333433010419}{72309387856948718920} a^{7} + \frac{33566873359060989267}{144618775713897437840} a^{5} - \frac{1}{2} a^{4} - \frac{8952824657692943665}{28923755142779487568} a^{3} + \frac{31427043081935048391}{72309387856948718920} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 177107930250000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||