Normalized defining polynomial
\( x^{22} - 88 x^{19} - 22 x^{18} + 616 x^{17} + 1254 x^{16} + 286 x^{15} - 26026 x^{14} + 22704 x^{13} + 119592 x^{12} - 242466 x^{11} + 48444 x^{10} + 529892 x^{9} - 1135354 x^{8} + 428692 x^{7} + 1028302 x^{6} - 1280840 x^{5} + 779856 x^{4} - 36300 x^{3} - 293150 x^{2} + 93324 x + 8730 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(691317220063227578535949337667555335077888=2^{32}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $79.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{21} - \frac{5708423402181891453468227527142759663809415518131353692205426398430813}{21638998352036733516777925540939999032354179083493289768940052940221943} a^{20} + \frac{2754063400154276689673976261200516756863434047575474279439536536871459}{7212999450678911172259308513646666344118059694497763256313350980073981} a^{19} + \frac{31068982563684510030803008887346116809473852635177596408071439612846189}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{18} + \frac{700568691610495004195737739756302500971122641877632861306078518789204}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{17} - \frac{965472392700937930612847796777958399876306781189532113609433112605095}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{16} - \frac{2194174761697983112819597355798279829255812585880772737207142764974455}{21638998352036733516777925540939999032354179083493289768940052940221943} a^{15} - \frac{3768989679974470605381394430622083474379772305867354712323609067231085}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{14} + \frac{26843874503391752222916375974532991421139749093328903936340598830757300}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{13} + \frac{8873939032043977562762730648905063268932366846880592772019813688208446}{21638998352036733516777925540939999032354179083493289768940052940221943} a^{12} + \frac{1037944781254735594026753215250347551781327570818088888839304620656627}{7212999450678911172259308513646666344118059694497763256313350980073981} a^{11} + \frac{3686855896562479681181193212880963711683980688296669402193247729433618}{21638998352036733516777925540939999032354179083493289768940052940221943} a^{10} + \frac{6997590307872032043545451972004219247907900554013300339869710640139740}{21638998352036733516777925540939999032354179083493289768940052940221943} a^{9} + \frac{29609952412600412963145225159669207582846952062112041169621462198350185}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{8} + \frac{593546556100766008993922577688529284352436909208353354028865844427604}{9273856436587171507190539517545713871008933892925695615260022688666547} a^{7} - \frac{11659148101410175842304251005212501672618456384440177032192343168428291}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{6} + \frac{10350972589296749028523318612836296094367015992390135747568761718215994}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{5} + \frac{7159962349594657715495708807473711525600041896843546882001175578928747}{64916995056110200550333776622819997097062537250479869306820158820665829} a^{4} + \frac{2762721583246529797331937188124544462684379166943446907424843002608797}{7212999450678911172259308513646666344118059694497763256313350980073981} a^{3} + \frac{6075469447606657297516330170788568089621286478504435661052077492052650}{21638998352036733516777925540939999032354179083493289768940052940221943} a^{2} + \frac{25331374822462778494212596254776611385601026122659073229196847139524101}{64916995056110200550333776622819997097062537250479869306820158820665829} a - \frac{1854951743654131024221914153429808672429593755493697810252144592236322}{21638998352036733516777925540939999032354179083493289768940052940221943}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23110616440200 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||