Normalized defining polynomial
\( x^{22} - 11 x^{20} - 165 x^{18} - 165 x^{16} + 1650 x^{14} + 3234 x^{12} - 1386 x^{10} - 5610 x^{8} - 1815 x^{6} + 1265 x^{4} + 495 x^{2} - 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6172475179135960522642404800603172634624=2^{28}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} - \frac{1}{7} a^{4} + \frac{3}{7}$, $\frac{1}{7} a^{7} - \frac{1}{7} a^{5} + \frac{3}{7} a$, $\frac{1}{7} a^{8} - \frac{1}{7} a^{4} + \frac{3}{7} a^{2} + \frac{3}{7}$, $\frac{1}{7} a^{9} - \frac{1}{7} a^{5} + \frac{3}{7} a^{3} + \frac{3}{7} a$, $\frac{1}{49} a^{10} + \frac{1}{49} a^{6} + \frac{1}{49} a^{4} + \frac{3}{49} a^{2} + \frac{6}{49}$, $\frac{1}{98} a^{11} - \frac{1}{98} a^{10} - \frac{1}{14} a^{9} - \frac{1}{14} a^{8} - \frac{3}{49} a^{7} + \frac{3}{49} a^{6} - \frac{17}{49} a^{5} + \frac{24}{49} a^{4} + \frac{31}{98} a^{3} + \frac{25}{98} a^{2} + \frac{13}{98} a + \frac{43}{98}$, $\frac{1}{98} a^{12} + \frac{1}{98} a^{8} - \frac{3}{49} a^{6} - \frac{39}{98} a^{4} + \frac{3}{49} a^{2} - \frac{3}{14}$, $\frac{1}{98} a^{13} + \frac{1}{98} a^{9} - \frac{3}{49} a^{7} - \frac{39}{98} a^{5} + \frac{3}{49} a^{3} - \frac{3}{14} a$, $\frac{1}{686} a^{14} + \frac{1}{686} a^{12} + \frac{3}{686} a^{10} - \frac{47}{686} a^{8} - \frac{43}{686} a^{6} - \frac{185}{686} a^{4} + \frac{257}{686} a^{2} + \frac{159}{686}$, $\frac{1}{686} a^{15} + \frac{1}{686} a^{13} + \frac{3}{686} a^{11} - \frac{47}{686} a^{9} - \frac{43}{686} a^{7} - \frac{185}{686} a^{5} + \frac{257}{686} a^{3} + \frac{159}{686} a$, $\frac{1}{1372} a^{16} + \frac{1}{686} a^{12} + \frac{3}{686} a^{10} + \frac{1}{343} a^{8} - \frac{1}{14} a^{7} + \frac{3}{343} a^{6} - \frac{3}{7} a^{5} + \frac{100}{343} a^{4} - \frac{1}{2} a^{3} + \frac{5}{98} a^{2} + \frac{2}{7} a - \frac{215}{1372}$, $\frac{1}{1372} a^{17} + \frac{1}{686} a^{13} + \frac{3}{686} a^{11} + \frac{1}{343} a^{9} - \frac{1}{14} a^{8} + \frac{3}{343} a^{7} + \frac{100}{343} a^{5} + \frac{1}{14} a^{4} + \frac{5}{98} a^{3} + \frac{2}{7} a^{2} - \frac{215}{1372} a + \frac{2}{7}$, $\frac{1}{9604} a^{18} + \frac{1}{4802} a^{16} + \frac{3}{4802} a^{14} - \frac{3}{686} a^{12} - \frac{3}{343} a^{10} - \frac{1}{14} a^{9} + \frac{13}{343} a^{8} + \frac{24}{343} a^{6} + \frac{1}{14} a^{5} + \frac{23}{4802} a^{4} + \frac{2}{7} a^{3} - \frac{699}{9604} a^{2} + \frac{2}{7} a - \frac{1213}{4802}$, $\frac{1}{9604} a^{19} + \frac{1}{4802} a^{17} + \frac{3}{4802} a^{15} - \frac{3}{686} a^{13} + \frac{1}{686} a^{11} - \frac{23}{686} a^{9} - \frac{1}{14} a^{8} + \frac{3}{343} a^{7} - \frac{1}{14} a^{6} - \frac{1643}{4802} a^{5} + \frac{1}{7} a^{4} + \frac{2339}{9604} a^{3} - \frac{3}{14} a^{2} - \frac{288}{2401} a + \frac{1}{14}$, $\frac{1}{9604} a^{20} + \frac{1}{4802} a^{16} + \frac{1}{4802} a^{14} - \frac{3}{686} a^{12} + \frac{1}{686} a^{10} - \frac{1}{14} a^{9} + \frac{23}{343} a^{8} - \frac{1}{14} a^{7} - \frac{187}{4802} a^{6} + \frac{1}{7} a^{5} - \frac{67}{1372} a^{4} - \frac{3}{14} a^{3} - \frac{1501}{4802} a^{2} + \frac{1}{14} a - \frac{334}{2401}$, $\frac{1}{9604} a^{21} + \frac{1}{4802} a^{17} + \frac{1}{4802} a^{15} - \frac{3}{686} a^{13} + \frac{1}{686} a^{11} - \frac{1}{98} a^{10} + \frac{23}{343} a^{9} - \frac{1}{14} a^{8} - \frac{187}{4802} a^{7} + \frac{3}{49} a^{6} - \frac{67}{1372} a^{5} - \frac{1}{98} a^{4} - \frac{1501}{4802} a^{3} + \frac{25}{98} a^{2} - \frac{334}{2401} a - \frac{3}{49}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3989928450040 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |