Normalized defining polynomial
\( x^{22} - 88 x^{18} - 66 x^{17} - 616 x^{16} + 638 x^{15} + 44 x^{14} - 748 x^{13} + 5742 x^{12} - 11648 x^{11} + 23980 x^{10} + 49368 x^{9} - 145508 x^{8} - 89232 x^{7} + 242308 x^{6} + 64240 x^{5} - 174680 x^{4} + 21120 x^{3} + 76296 x^{2} - 33704 x - 27476 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6172475179135960522642404800603172634624=2^{28}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{2} a^{19}$, $\frac{1}{2} a^{20}$, $\frac{1}{210092755982735111622941152472980671412952086950709894} a^{21} - \frac{42885338987707289048755181373641152401871070723730369}{210092755982735111622941152472980671412952086950709894} a^{20} - \frac{21448214774312853747045262741284017283127979545638389}{210092755982735111622941152472980671412952086950709894} a^{19} + \frac{47551618837264859764467871923430091429330863870226443}{210092755982735111622941152472980671412952086950709894} a^{18} + \frac{10833304400158941182796286278262670302565256400319631}{105046377991367555811470576236490335706476043475354947} a^{17} + \frac{19666096506541775297153978952236709111585287597466653}{210092755982735111622941152472980671412952086950709894} a^{16} - \frac{10566949298002740278516460173920917389564161300816723}{210092755982735111622941152472980671412952086950709894} a^{15} - \frac{1930741139715875902108960279891836032098664017416471}{210092755982735111622941152472980671412952086950709894} a^{14} + \frac{7520358339780824797429195357072429002388895493099664}{105046377991367555811470576236490335706476043475354947} a^{13} + \frac{22891912963392395515501373345150046740580454285614659}{105046377991367555811470576236490335706476043475354947} a^{12} - \frac{1966375722862217088885685209597270117948631311001056}{105046377991367555811470576236490335706476043475354947} a^{11} - \frac{50871967794939244443417977944446885443156155625803783}{105046377991367555811470576236490335706476043475354947} a^{10} - \frac{19547574828332156142321166823776860620362726841035214}{105046377991367555811470576236490335706476043475354947} a^{9} + \frac{16962795536729028512267390563843802298835637053722276}{105046377991367555811470576236490335706476043475354947} a^{8} - \frac{6962718244103862011860716367455013323466823462044322}{105046377991367555811470576236490335706476043475354947} a^{7} - \frac{52071201509283769244923207744626811018455770400126570}{105046377991367555811470576236490335706476043475354947} a^{6} + \frac{43825294859185869140458991528839112699231127401156526}{105046377991367555811470576236490335706476043475354947} a^{5} + \frac{694506720964038720553065990983017104646976440485092}{105046377991367555811470576236490335706476043475354947} a^{4} - \frac{9982169538239764753424171853297225823570749941104603}{105046377991367555811470576236490335706476043475354947} a^{3} - \frac{28702834604432526911823144684983147544189378688761593}{105046377991367555811470576236490335706476043475354947} a^{2} - \frac{21157179446411915275154509270651987365368347196984417}{105046377991367555811470576236490335706476043475354947} a + \frac{24732575035630273713918854941427853511215159048878820}{105046377991367555811470576236490335706476043475354947}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2473904084450 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |