Normalized defining polynomial
\( x^{22} - 22 x^{20} + 110 x^{18} - 198 x^{17} - 1232 x^{16} + 880 x^{15} + 6072 x^{14} + 17732 x^{13} + 40128 x^{12} - 32728 x^{11} - 351384 x^{10} - 402776 x^{9} + 530464 x^{8} + 1234640 x^{7} + 593560 x^{6} - 1300112 x^{5} - 1035144 x^{4} + 2519792 x^{3} - 1050016 x^{2} - 2919664 x + 1889288 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(475280588793468960243465169646444292866048=2^{28}\cdot 7^{11}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $78.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{22} a^{11} + \frac{2}{11}$, $\frac{1}{22} a^{12} + \frac{2}{11} a$, $\frac{1}{22} a^{13} + \frac{2}{11} a^{2}$, $\frac{1}{22} a^{14} + \frac{2}{11} a^{3}$, $\frac{1}{44} a^{15} + \frac{1}{11} a^{4}$, $\frac{1}{44} a^{16} + \frac{1}{11} a^{5}$, $\frac{1}{44} a^{17} + \frac{1}{11} a^{6}$, $\frac{1}{44} a^{18} + \frac{1}{11} a^{7}$, $\frac{1}{44} a^{19} + \frac{1}{11} a^{8}$, $\frac{1}{44} a^{20} + \frac{1}{11} a^{9}$, $\frac{1}{299615864617274079915740057173559981252306088551347739056780} a^{21} + \frac{197677327925803231684817768814193380557841067444313522388}{74903966154318519978935014293389995313076522137836934764195} a^{20} - \frac{2075961099729039295000202535527513426737506645087797118133}{299615864617274079915740057173559981252306088551347739056780} a^{19} - \frac{1407598306101239171917885972884112287962359820193915847511}{299615864617274079915740057173559981252306088551347739056780} a^{18} + \frac{2570938140360825660973414339954385723115538804788735106853}{299615864617274079915740057173559981252306088551347739056780} a^{17} - \frac{2906486834621412660754861186069594374334802626814658933847}{299615864617274079915740057173559981252306088551347739056780} a^{16} - \frac{798301076393202312593719183459490283078957390131622269643}{149807932308637039957870028586779990626153044275673869528390} a^{15} - \frac{915888678448734555408522541283417766624187594205421317871}{149807932308637039957870028586779990626153044275673869528390} a^{14} + \frac{109290918603276280744016327756368573502498841895541935549}{149807932308637039957870028586779990626153044275673869528390} a^{13} + \frac{902479109110755562952975300930332892170453187816384168977}{74903966154318519978935014293389995313076522137836934764195} a^{12} + \frac{1314760185009396119397597921301416538477771521906551495677}{149807932308637039957870028586779990626153044275673869528390} a^{11} - \frac{2605658920657054090057711015476662894426104167212456651160}{14980793230863703995787002858677999062615304427567386952839} a^{10} + \frac{13988268051366706987427095087511761339136841192365139909583}{149807932308637039957870028586779990626153044275673869528390} a^{9} - \frac{3089472302748447235872388915919761806467286326663435639227}{149807932308637039957870028586779990626153044275673869528390} a^{8} + \frac{26150772208914964203279829930103507525633565497510178281384}{74903966154318519978935014293389995313076522137836934764195} a^{7} - \frac{479459956744214857661409584638855017202491309106166468442}{74903966154318519978935014293389995313076522137836934764195} a^{6} + \frac{20146741444349660137408110570925835691524214312174300195786}{74903966154318519978935014293389995313076522137836934764195} a^{5} + \frac{22325292690611407782990807989284305543371983620072896461544}{74903966154318519978935014293389995313076522137836934764195} a^{4} - \frac{27004408882735132343757286655632377171841940024487141359118}{74903966154318519978935014293389995313076522137836934764195} a^{3} - \frac{17344436801728398624700608062117229047741825803907362151583}{74903966154318519978935014293389995313076522137836934764195} a^{2} - \frac{5965505864384713979360039994539962041922762107469390472508}{14980793230863703995787002858677999062615304427567386952839} a - \frac{30220884744117466283298025365957867425099435578183896033741}{74903966154318519978935014293389995313076522137836934764195}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10381078396300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||