Normalized defining polynomial
\( x^{22} + 18 x^{20} - 120 x^{18} - 2610 x^{16} + 3375 x^{14} + 87291 x^{12} - 106542 x^{10} - 269325 x^{8} + 41715 x^{6} + 128790 x^{4} + 9234 x^{2} - 243 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46938516011269707747849773730468750000000000=2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5}$, $\frac{1}{3} a^{6}$, $\frac{1}{3} a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{9} a^{9}$, $\frac{1}{9} a^{10}$, $\frac{1}{9} a^{11}$, $\frac{1}{99} a^{12} + \frac{1}{33} a^{10} + \frac{1}{11} a^{8} + \frac{5}{33} a^{6} + \frac{4}{11} a^{4} + \frac{4}{11} a^{2} - \frac{5}{11}$, $\frac{1}{99} a^{13} + \frac{1}{33} a^{11} - \frac{2}{99} a^{9} + \frac{5}{33} a^{7} + \frac{1}{33} a^{5} + \frac{4}{11} a^{3} - \frac{5}{11} a$, $\frac{1}{297} a^{14} - \frac{5}{33} a^{8} - \frac{1}{33} a^{6} + \frac{1}{11} a^{4} - \frac{2}{11} a^{2} + \frac{5}{11}$, $\frac{1}{297} a^{15} - \frac{4}{99} a^{9} - \frac{1}{33} a^{7} + \frac{1}{11} a^{5} - \frac{2}{11} a^{3} + \frac{5}{11} a$, $\frac{1}{594} a^{16} - \frac{1}{594} a^{15} - \frac{1}{594} a^{14} - \frac{1}{18} a^{11} - \frac{2}{99} a^{10} + \frac{2}{99} a^{9} - \frac{7}{66} a^{8} - \frac{5}{33} a^{7} + \frac{2}{33} a^{6} + \frac{4}{33} a^{5} - \frac{3}{22} a^{4} + \frac{1}{11} a^{3} - \frac{2}{11} a^{2} - \frac{5}{22} a - \frac{5}{22}$, $\frac{1}{594} a^{17} - \frac{1}{594} a^{14} - \frac{1}{198} a^{12} + \frac{7}{198} a^{11} + \frac{4}{99} a^{10} - \frac{1}{66} a^{9} - \frac{3}{22} a^{8} - \frac{4}{33} a^{7} - \frac{2}{33} a^{6} + \frac{5}{66} a^{5} - \frac{5}{22} a^{4} - \frac{3}{11} a^{3} + \frac{9}{22} a^{2} - \frac{1}{2}$, $\frac{1}{1782} a^{18} - \frac{1}{594} a^{15} - \frac{1}{198} a^{13} - \frac{1}{198} a^{12} + \frac{4}{99} a^{11} - \frac{1}{18} a^{10} - \frac{5}{198} a^{9} + \frac{1}{33} a^{8} - \frac{2}{33} a^{7} + \frac{7}{66} a^{6} + \frac{7}{66} a^{5} - \frac{4}{11} a^{4} + \frac{9}{22} a^{3} - \frac{3}{11} a^{2} - \frac{1}{2} a + \frac{1}{11}$, $\frac{1}{1782} a^{19} - \frac{1}{594} a^{15} - \frac{1}{198} a^{13} - \frac{1}{18} a^{10} + \frac{5}{99} a^{9} - \frac{1}{6} a^{8} - \frac{1}{22} a^{7} - \frac{1}{6} a^{6} + \frac{1}{11} a^{5} - \frac{2}{11} a^{3} - \frac{1}{2} a^{2} - \frac{3}{22} a - \frac{1}{2}$, $\frac{1}{171171426534614946} a^{20} + \frac{2503808150918}{28528571089102491} a^{18} - \frac{1421478601496}{2593506462645681} a^{16} - \frac{1}{594} a^{15} + \frac{14776802239472}{9509523696367497} a^{14} + \frac{19681440585016}{9509523696367497} a^{12} - \frac{15084540326202}{1056613744040833} a^{10} - \frac{7}{198} a^{9} - \frac{110969614133365}{1056613744040833} a^{8} + \frac{1}{66} a^{7} + \frac{263922159616549}{3169841232122499} a^{6} + \frac{4}{33} a^{5} - \frac{457130530757517}{2113227488081666} a^{4} - \frac{9}{22} a^{3} + \frac{301187953309967}{2113227488081666} a^{2} + \frac{3}{11} a - \frac{882888205457303}{2113227488081666}$, $\frac{1}{171171426534614946} a^{21} + \frac{2503808150918}{28528571089102491} a^{19} - \frac{1421478601496}{2593506462645681} a^{17} - \frac{7394981475971}{57057142178204982} a^{15} - \frac{1}{594} a^{14} + \frac{19681440585016}{9509523696367497} a^{13} + \frac{785092018169197}{19019047392734994} a^{11} - \frac{1}{18} a^{10} + \frac{249998806666154}{9509523696367497} a^{9} - \frac{1}{11} a^{8} - \frac{72118938315822}{1056613744040833} a^{7} - \frac{5}{33} a^{6} - \frac{602945232970127}{6339682464244998} a^{5} + \frac{5}{11} a^{4} + \frac{493299543135573}{2113227488081666} a^{3} + \frac{1}{11} a^{2} + \frac{375030154030174}{1056613744040833} a - \frac{5}{22}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 408301799611000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.10.10.10 | $x^{10} - 11 x^{8} + 10 x^{6} - 62 x^{4} + 21 x^{2} - 55$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |