Normalized defining polynomial
\( x^{22} + 3 x^{20} - 735 x^{18} + 2220 x^{16} + 37035 x^{14} - 35379 x^{12} - 392202 x^{10} - 80955 x^{8} + 1213110 x^{6} + 1401030 x^{4} + 428679 x^{2} - 108 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(46938516011269707747849773730468750000000000=2^{10}\cdot 3^{21}\cdot 5^{20}\cdot 11^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $96.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8}$, $\frac{1}{3} a^{9}$, $\frac{1}{3} a^{10}$, $\frac{1}{3} a^{11}$, $\frac{1}{15} a^{12} - \frac{2}{15} a^{10} + \frac{1}{5} a^{2} - \frac{2}{5}$, $\frac{1}{15} a^{13} - \frac{2}{15} a^{11} + \frac{1}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{15} a^{14} + \frac{1}{15} a^{10} + \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{45} a^{15} + \frac{2}{15} a^{11} + \frac{2}{5} a^{5} + \frac{2}{5} a$, $\frac{1}{90} a^{16} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} - \frac{1}{30} a^{12} + \frac{1}{15} a^{11} - \frac{1}{6} a^{10} - \frac{3}{10} a^{6} - \frac{1}{2} a^{5} + \frac{2}{5} a^{4} - \frac{1}{10} a^{3} + \frac{2}{5} a^{2} - \frac{3}{10} a$, $\frac{1}{90} a^{17} - \frac{1}{90} a^{15} - \frac{1}{30} a^{14} - \frac{1}{30} a^{13} - \frac{1}{30} a^{11} + \frac{2}{15} a^{10} - \frac{3}{10} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} - \frac{1}{10} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} + \frac{2}{5} a + \frac{2}{5}$, $\frac{1}{90} a^{18} - \frac{1}{90} a^{15} - \frac{1}{30} a^{13} + \frac{1}{10} a^{10} + \frac{1}{30} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{3} - \frac{1}{2} a - \frac{1}{5}$, $\frac{1}{90} a^{19} - \frac{1}{30} a^{13} - \frac{1}{30} a^{12} - \frac{1}{6} a^{11} - \frac{1}{10} a^{10} + \frac{1}{30} a^{9} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{10} a^{3} - \frac{1}{10} a^{2} - \frac{1}{2} a + \frac{1}{5}$, $\frac{1}{2660954155510389747738524190} a^{20} - \frac{5470215108586177037417713}{2660954155510389747738524190} a^{18} + \frac{517304487031919254748489}{241904923228217249794411290} a^{16} - \frac{1}{90} a^{15} + \frac{787324174959186500492117}{88698471850346324924617473} a^{14} - \frac{1}{30} a^{13} + \frac{6202100394012451449208813}{443492359251731624623087365} a^{12} - \frac{1}{6} a^{11} + \frac{21716999027028023461270779}{295661572834487749748724910} a^{10} - \frac{1}{6} a^{9} - \frac{46497190619866856187933449}{443492359251731624623087365} a^{8} - \frac{52704856691889572562859777}{295661572834487749748724910} a^{6} + \frac{3}{10} a^{5} - \frac{2235768521786890849997497}{5375664960627049995431362} a^{4} + \frac{2}{5} a^{3} - \frac{74994401118148313166163229}{295661572834487749748724910} a^{2} - \frac{29180984525551102208441502}{147830786417243874874362455}$, $\frac{1}{5321908311020779495477048380} a^{21} - \frac{5470215108586177037417713}{5321908311020779495477048380} a^{19} + \frac{517304487031919254748489}{483809846456434499588822580} a^{17} - \frac{8878147329530488733745368}{1330477077755194873869262095} a^{15} - \frac{1}{30} a^{14} + \frac{13990119357157892624430039}{591323145668975499497449820} a^{13} - \frac{1}{30} a^{12} - \frac{37415315539869526488474203}{591323145668975499497449820} a^{11} - \frac{2}{15} a^{10} + \frac{16888932632896169781071501}{147830786417243874874362455} a^{9} - \frac{52704856691889572562859777}{591323145668975499497449820} a^{7} - \frac{1}{2} a^{6} - \frac{2122752532155232313067951}{13439162401567624988578405} a^{5} + \frac{2}{5} a^{4} - \frac{22714121917349769095645369}{295661572834487749748724910} a^{3} + \frac{2}{5} a^{2} + \frac{41546689299987354071393883}{118264629133795099899489964} a + \frac{1}{10}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 210005930239000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }{,}\,{\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.10.0.1 | $x^{10} - x^{3} + 1$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 2.10.10.13 | $x^{10} - 15 x^{8} + 26 x^{6} - 22 x^{4} + 37 x^{2} - 59$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.5.4.4 | $x^{5} - 11$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |