Normalized defining polynomial
\( x^{22} - 33 x^{20} - 231 x^{18} + 8547 x^{16} + 28028 x^{14} - 734118 x^{12} - 2309076 x^{10} + 20034630 x^{8} + 81161003 x^{6} + 70596603 x^{4} - 8319465 x^{2} - 184877 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4674145049367015315638517237027277812413977591808=2^{40}\cdot 7^{15}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $163.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{7} a^{6} + \frac{2}{7} a^{4}$, $\frac{1}{7} a^{7} + \frac{2}{7} a^{5}$, $\frac{1}{7} a^{8} + \frac{3}{7} a^{4}$, $\frac{1}{7} a^{9} + \frac{3}{7} a^{5}$, $\frac{1}{49} a^{10} + \frac{2}{49} a^{8}$, $\frac{1}{98} a^{11} - \frac{1}{98} a^{10} - \frac{5}{98} a^{9} + \frac{5}{98} a^{8} + \frac{2}{7} a^{5} - \frac{2}{7} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{98} a^{12} + \frac{3}{98} a^{8} + \frac{3}{14} a^{4} - \frac{1}{2}$, $\frac{1}{98} a^{13} + \frac{3}{98} a^{9} + \frac{3}{14} a^{5} - \frac{1}{2} a$, $\frac{1}{686} a^{14} + \frac{1}{343} a^{12} - \frac{1}{98} a^{10} - \frac{1}{49} a^{8} - \frac{1}{14} a^{6} - \frac{2}{7} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{686} a^{15} + \frac{1}{343} a^{13} - \frac{1}{98} a^{10} - \frac{1}{14} a^{9} + \frac{5}{98} a^{8} - \frac{1}{14} a^{7} - \frac{2}{7} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{686} a^{16} + \frac{3}{686} a^{12} + \frac{3}{98} a^{8} - \frac{3}{14} a^{4}$, $\frac{1}{686} a^{17} + \frac{3}{686} a^{13} + \frac{3}{98} a^{9} - \frac{3}{14} a^{5}$, $\frac{1}{4802} a^{18} + \frac{1}{2401} a^{16} - \frac{1}{49} a^{8} + \frac{3}{7} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4802} a^{19} + \frac{1}{2401} a^{17} - \frac{1}{49} a^{9} + \frac{3}{7} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{131628409088088232277574974} a^{20} + \frac{6417643742354036520264}{65814204544044116138787487} a^{18} - \frac{48339520484550853254285}{131628409088088232277574974} a^{16} + \frac{1405003238696124491185}{9402029220577730876969641} a^{14} + \frac{34177424639799362873723}{9402029220577730876969641} a^{12} + \frac{12852367014325623590840}{1343147031511104410995663} a^{10} - \frac{26626960003520462777413}{1343147031511104410995663} a^{8} + \frac{6068222836126495195673}{191878147358729201570809} a^{6} + \frac{46529341011307227446375}{383756294717458403141618} a^{4} - \frac{6616126049960758429561}{27411163908389885938687} a^{2} - \frac{14889479010854636595033}{54822327816779771877374}$, $\frac{1}{131628409088088232277574974} a^{21} + \frac{6417643742354036520264}{65814204544044116138787487} a^{19} - \frac{48339520484550853254285}{131628409088088232277574974} a^{17} + \frac{1405003238696124491185}{9402029220577730876969641} a^{15} + \frac{34177424639799362873723}{9402029220577730876969641} a^{13} - \frac{1706429879738638757007}{2686294063022208821991326} a^{11} - \frac{1}{98} a^{10} + \frac{11971699933558357734087}{383756294717458403141618} a^{9} + \frac{5}{98} a^{8} + \frac{6068222836126495195673}{191878147358729201570809} a^{7} - \frac{63115314622252316308373}{383756294717458403141618} a^{5} - \frac{2}{7} a^{4} + \frac{14178911808468369079565}{54822327816779771877374} a^{3} - \frac{1}{2} a^{2} + \frac{6260842448767624671827}{27411163908389885938687} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67668975518300000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n35 |
| Character table for t22n35 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||