Normalized defining polynomial
\( x^{22} + 27 x^{20} - 135 x^{18} - 6202 x^{16} - 11519 x^{14} + 276940 x^{12} + 499375 x^{10} - 3850750 x^{8} - 4878750 x^{6} + 13925000 x^{4} + 6890625 x^{2} - 1953125 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4414176514699308162346853410422456320000000=2^{22}\cdot 5^{7}\cdot 1297^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.78$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{2}{5} a^{2}$, $\frac{1}{5} a^{9} - \frac{2}{5} a^{3}$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{5} + \frac{2}{5} a^{3}$, $\frac{1}{25} a^{12} - \frac{2}{25} a^{6} + \frac{2}{5} a^{4}$, $\frac{1}{25} a^{13} - \frac{2}{25} a^{7} + \frac{2}{5} a^{5}$, $\frac{1}{125} a^{14} + \frac{2}{125} a^{12} - \frac{2}{125} a^{8} + \frac{31}{125} a^{6} + \frac{9}{25} a^{4} - \frac{2}{5} a^{2}$, $\frac{1}{125} a^{15} + \frac{2}{125} a^{13} - \frac{2}{125} a^{9} + \frac{31}{125} a^{7} + \frac{9}{25} a^{5} - \frac{2}{5} a^{3}$, $\frac{1}{625} a^{16} + \frac{2}{625} a^{14} - \frac{2}{125} a^{12} - \frac{2}{625} a^{10} + \frac{31}{625} a^{8} + \frac{38}{125} a^{6} + \frac{4}{25} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{625} a^{17} + \frac{2}{625} a^{15} - \frac{2}{125} a^{13} - \frac{2}{625} a^{11} + \frac{31}{625} a^{9} + \frac{38}{125} a^{7} + \frac{4}{25} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{3125} a^{18} + \frac{2}{3125} a^{16} - \frac{2}{625} a^{14} + \frac{23}{3125} a^{12} + \frac{31}{3125} a^{10} + \frac{38}{625} a^{8} + \frac{52}{125} a^{6} + \frac{3}{25} a^{4} + \frac{1}{5} a^{2}$, $\frac{1}{3125} a^{19} + \frac{2}{3125} a^{17} - \frac{2}{625} a^{15} + \frac{23}{3125} a^{13} + \frac{31}{3125} a^{11} + \frac{38}{625} a^{9} + \frac{52}{125} a^{7} + \frac{3}{25} a^{5} + \frac{1}{5} a^{3}$, $\frac{1}{875620949883545580347860046875} a^{20} - \frac{53525210627614780214892368}{875620949883545580347860046875} a^{18} + \frac{10622694105944491694893324}{35024837995341823213914401875} a^{16} + \frac{696200484068804486820833298}{875620949883545580347860046875} a^{14} - \frac{14775103447579646229558284104}{875620949883545580347860046875} a^{12} + \frac{24952656541811308629116513}{2109929999719386940597253125} a^{10} + \frac{2759831898349294420059949764}{35024837995341823213914401875} a^{8} - \frac{333665137075730835550856871}{1400993519813672928556576075} a^{6} - \frac{390434805006461490519808504}{1400993519813672928556576075} a^{4} + \frac{11517822110303276344669307}{56039740792546917142263043} a^{2} + \frac{26924722062713831071286845}{56039740792546917142263043}$, $\frac{1}{4378104749417727901739300234375} a^{21} - \frac{613922618553083951637522798}{4378104749417727901739300234375} a^{19} + \frac{669550619247738547039360093}{875620949883545580347860046875} a^{17} + \frac{696200484068804486820833298}{4378104749417727901739300234375} a^{15} + \frac{42385432160818209255550019756}{4378104749417727901739300234375} a^{13} + \frac{47233517338848034721823506}{10549649998596934702986265625} a^{11} + \frac{966660461534706070864736471}{35024837995341823213914401875} a^{9} + \frac{180985760775394087940396064}{35024837995341823213914401875} a^{7} - \frac{3136382103841260430490697611}{7004967599068364642782880375} a^{5} - \frac{670927519751593541126073024}{1400993519813672928556576075} a^{3} + \frac{139004203647807665355812931}{280198703962734585711315215} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 20028702128100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 45056 |
| The 200 conjugacy class representatives for t22n32 are not computed |
| Character table for t22n32 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22$ | R | $22$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | $22$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 1297 | Data not computed | ||||||