Normalized defining polynomial
\( x^{22} - 33 x^{20} + 231 x^{18} + 1353 x^{16} - 13310 x^{14} + 11374 x^{12} + 75878 x^{10} - 61974 x^{8} - 132979 x^{6} - 51997 x^{4} - 4829 x^{2} - 99 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4345422526111716207940252979624633534775296=2^{34}\cdot 7^{10}\cdot 11^{23}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $86.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{16} a - \frac{3}{16}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{8} + \frac{3}{16} a^{4} - \frac{5}{16}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} + \frac{1}{32} a^{10} - \frac{1}{32} a^{8} + \frac{3}{32} a^{6} - \frac{3}{32} a^{4} - \frac{5}{32} a^{2} + \frac{5}{32}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} + \frac{1}{16} a^{8} - \frac{1}{32} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} + \frac{1}{8} a^{4} + \frac{1}{32} a^{3} + \frac{3}{16} a^{2} - \frac{1}{32} a - \frac{3}{16}$, $\frac{1}{32} a^{16} + \frac{1}{16} a^{8} - \frac{1}{4} a^{4} + \frac{5}{32}$, $\frac{1}{64} a^{17} - \frac{1}{64} a^{16} + \frac{1}{32} a^{9} - \frac{1}{32} a^{8} - \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{5}{64} a - \frac{5}{64}$, $\frac{1}{64} a^{18} - \frac{1}{64} a^{16} + \frac{1}{32} a^{10} - \frac{1}{32} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{4} + \frac{5}{64} a^{2} - \frac{5}{64}$, $\frac{1}{64} a^{19} - \frac{1}{64} a^{16} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{3}{32} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{64} a^{3} + \frac{3}{16} a^{2} - \frac{1}{16} a + \frac{7}{64}$, $\frac{1}{83959563183144832} a^{20} - \frac{154330277748879}{20989890795786208} a^{18} - \frac{1224939831732665}{83959563183144832} a^{16} + \frac{60156301101641}{10494945397893104} a^{14} + \frac{847203282044013}{41979781591572416} a^{12} + \frac{279110826508147}{5247472698946552} a^{10} - \frac{154378498183441}{41979781591572416} a^{8} - \frac{1231113427125069}{10494945397893104} a^{6} + \frac{17870548313255285}{83959563183144832} a^{4} + \frac{9788699996282859}{20989890795786208} a^{2} + \frac{12990264678525195}{83959563183144832}$, $\frac{1}{251878689549434496} a^{21} - \frac{51443425916293}{20989890795786208} a^{19} + \frac{466265505913537}{83959563183144832} a^{17} + \frac{258748896523867}{20989890795786208} a^{15} - \frac{464664892692625}{125939344774717248} a^{13} - \frac{851358956072369}{62969672387358624} a^{11} + \frac{6404962375499749}{125939344774717248} a^{9} - \frac{164808197381727}{20989890795786208} a^{7} - \frac{52970333122523167}{251878689549434496} a^{5} - \frac{340544872244641}{15742418096839656} a^{3} - \frac{1}{2} a^{2} + \frac{112692245958509683}{251878689549434496} a - \frac{1}{2}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42130011981300 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||