Normalized defining polynomial
\( x^{22} - 5 x^{21} + 2 x^{20} + 36 x^{19} - 157 x^{18} + 302 x^{17} + 31 x^{16} - 431 x^{15} - 145 x^{14} - 126 x^{13} - 106 x^{12} - 3955 x^{11} + 10115 x^{10} + 5177 x^{9} - 3345 x^{8} - 7080 x^{7} + 9157 x^{6} - 14850 x^{5} - 37415 x^{4} + 1350 x^{3} + 12892 x^{2} + 1090 x - 229 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} + \frac{16}{47} a^{19} - \frac{3}{47} a^{18} + \frac{16}{47} a^{17} - \frac{20}{47} a^{16} + \frac{19}{47} a^{15} + \frac{12}{47} a^{14} + \frac{16}{47} a^{13} + \frac{11}{47} a^{11} - \frac{16}{47} a^{10} - \frac{5}{47} a^{9} + \frac{3}{47} a^{8} - \frac{11}{47} a^{7} + \frac{7}{47} a^{6} + \frac{14}{47} a^{5} + \frac{14}{47} a^{4} - \frac{13}{47} a^{3} - \frac{21}{47} a^{2} - \frac{16}{47} a - \frac{23}{47}$, $\frac{1}{130248142770186166791966360227064174724951754719789} a^{21} - \frac{367350108073168960956857890581176578244415174963}{130248142770186166791966360227064174724951754719789} a^{20} - \frac{39114683127559188771979747506997117764568510631090}{130248142770186166791966360227064174724951754719789} a^{19} + \frac{37889456281929706781659711069845342970600607193243}{130248142770186166791966360227064174724951754719789} a^{18} - \frac{30859047070714794694178018204434794153702555079303}{130248142770186166791966360227064174724951754719789} a^{17} + \frac{11164028632906766929488560896607829072156272661607}{130248142770186166791966360227064174724951754719789} a^{16} + \frac{56599083535376253352715793949364818253299248644821}{130248142770186166791966360227064174724951754719789} a^{15} + \frac{32617115782934872820009485828756851618581973856612}{130248142770186166791966360227064174724951754719789} a^{14} - \frac{14188397661385518167035811410112211703583227329464}{130248142770186166791966360227064174724951754719789} a^{13} - \frac{57537324272467589929988050188924661665303188489685}{130248142770186166791966360227064174724951754719789} a^{12} + \frac{43180090452767100792946662897533773780835402234006}{130248142770186166791966360227064174724951754719789} a^{11} + \frac{42500938654785834467348681409445684085288121005189}{130248142770186166791966360227064174724951754719789} a^{10} + \frac{25948100272826571769759156874515146225321090533031}{130248142770186166791966360227064174724951754719789} a^{9} + \frac{25758988242708493930085583700263636376778299879517}{130248142770186166791966360227064174724951754719789} a^{8} + \frac{20125282267720155252667167364878300618694931681867}{130248142770186166791966360227064174724951754719789} a^{7} + \frac{2759688219323079419530793842088195922386359964033}{130248142770186166791966360227064174724951754719789} a^{6} - \frac{40794474108229928167759545306221317911289159603541}{130248142770186166791966360227064174724951754719789} a^{5} + \frac{52468316006658326368406656881273242655266723170804}{130248142770186166791966360227064174724951754719789} a^{4} + \frac{54459649466027542146258016604764962526411492175395}{130248142770186166791966360227064174724951754719789} a^{3} + \frac{47675964302448849763081344267811607673980020978351}{130248142770186166791966360227064174724951754719789} a^{2} + \frac{8041043238337983491028863873615459750123264854480}{130248142770186166791966360227064174724951754719789} a - \frac{47115341907987959576923338941356423404611200334392}{130248142770186166791966360227064174724951754719789}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 355171257.143 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||