Normalized defining polynomial
\( x^{22} - 8 x^{21} + 18 x^{20} + 17 x^{19} - 113 x^{18} + 30 x^{17} + 335 x^{16} + 218 x^{15} - 3607 x^{14} + 9536 x^{13} - 14993 x^{12} + 19365 x^{11} - 31525 x^{10} + 66337 x^{9} - 124953 x^{8} + 178846 x^{7} - 184444 x^{6} + 124670 x^{5} - 38191 x^{4} - 12470 x^{3} + 14913 x^{2} - 4212 x + 277 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{799466368301954011781828145962836239752903} a^{21} - \frac{77854696372531296531780038959392878704849}{799466368301954011781828145962836239752903} a^{20} - \frac{285607015043815130481582153220012526599385}{799466368301954011781828145962836239752903} a^{19} + \frac{331599787624165743912655465788412128419578}{799466368301954011781828145962836239752903} a^{18} + \frac{162633937697908653435031435036851477520506}{799466368301954011781828145962836239752903} a^{17} - \frac{190436177429480918259370333400578430723434}{799466368301954011781828145962836239752903} a^{16} + \frac{241672719833464103548336534566223411973467}{799466368301954011781828145962836239752903} a^{15} - \frac{89629960528697959147269939218923917862846}{799466368301954011781828145962836239752903} a^{14} - \frac{182526637358794602005538684946383154000320}{799466368301954011781828145962836239752903} a^{13} + \frac{323168967732348308463364560889529991848940}{799466368301954011781828145962836239752903} a^{12} - \frac{390947281476651074564531492476096812304592}{799466368301954011781828145962836239752903} a^{11} + \frac{329356105513931806608702517790967263849214}{799466368301954011781828145962836239752903} a^{10} - \frac{152033191668755613301978003040725174081248}{799466368301954011781828145962836239752903} a^{9} + \frac{258237283135962645320541038185073413757504}{799466368301954011781828145962836239752903} a^{8} + \frac{48965143686327907882269389872433085128672}{799466368301954011781828145962836239752903} a^{7} + \frac{192279016315228959024248902918204065467016}{799466368301954011781828145962836239752903} a^{6} + \frac{5017911377482124002376160363879378321754}{799466368301954011781828145962836239752903} a^{5} - \frac{191793400614598250745086731383252050885997}{799466368301954011781828145962836239752903} a^{4} + \frac{219615171730082430448545661650869552079422}{799466368301954011781828145962836239752903} a^{3} - \frac{368452189628459530763418172897288108043210}{799466368301954011781828145962836239752903} a^{2} + \frac{17053004257499815180896212233678521987996}{799466368301954011781828145962836239752903} a + \frac{290901299842802213754452956434596501656160}{799466368301954011781828145962836239752903}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 343593724.102 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||