Normalized defining polynomial
\( x^{22} - 9 x^{21} + 35 x^{20} - 62 x^{19} - 17 x^{18} + 429 x^{17} - 1469 x^{16} + 2710 x^{15} - 1068 x^{14} - 8995 x^{13} + 24766 x^{12} - 21230 x^{11} - 17678 x^{10} + 54245 x^{9} - 48721 x^{8} + 10505 x^{7} + 21927 x^{6} - 21117 x^{5} + 10009 x^{4} - 3601 x^{3} + 1290 x^{2} - 800 x + 139 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} - \frac{20}{47} a^{19} - \frac{22}{47} a^{18} - \frac{14}{47} a^{17} - \frac{20}{47} a^{16} + \frac{15}{47} a^{15} + \frac{5}{47} a^{14} + \frac{4}{47} a^{13} - \frac{6}{47} a^{12} + \frac{21}{47} a^{11} + \frac{18}{47} a^{10} + \frac{15}{47} a^{9} + \frac{13}{47} a^{8} - \frac{14}{47} a^{7} + \frac{2}{47} a^{6} - \frac{21}{47} a^{5} - \frac{16}{47} a^{4} + \frac{10}{47} a^{3} - \frac{4}{47} a^{2} + \frac{18}{47} a - \frac{9}{47}$, $\frac{1}{5168368839036024054340686659936298612726495319} a^{21} - \frac{45908703236069379512263982071770227054075638}{5168368839036024054340686659936298612726495319} a^{20} + \frac{1534812428336299422860993673177543890574771261}{5168368839036024054340686659936298612726495319} a^{19} + \frac{1452551632456926120909289122744011088509263044}{5168368839036024054340686659936298612726495319} a^{18} + \frac{1583573294455186754947376862074030765647155750}{5168368839036024054340686659936298612726495319} a^{17} + \frac{983529233319731709335172437537635319604027237}{5168368839036024054340686659936298612726495319} a^{16} + \frac{702395502445005912336229030684771893134337964}{5168368839036024054340686659936298612726495319} a^{15} - \frac{119721789439015870238671292102805508073089128}{5168368839036024054340686659936298612726495319} a^{14} + \frac{331470981393824987534557486623686917960945706}{5168368839036024054340686659936298612726495319} a^{13} + \frac{192390692003766994580561444199227192171571740}{5168368839036024054340686659936298612726495319} a^{12} + \frac{1938370212665383430763315474607470018424836413}{5168368839036024054340686659936298612726495319} a^{11} + \frac{1411251015537416340353956364937734966673185536}{5168368839036024054340686659936298612726495319} a^{10} + \frac{365756579723208901289295983437966360913206387}{5168368839036024054340686659936298612726495319} a^{9} + \frac{113751277887125992482981939788616656931849385}{5168368839036024054340686659936298612726495319} a^{8} - \frac{2125272214903891996820237549351355920875851028}{5168368839036024054340686659936298612726495319} a^{7} - \frac{1902506253996444976660392880146528480064773628}{5168368839036024054340686659936298612726495319} a^{6} + \frac{2462326957451932697697270288146261317256336917}{5168368839036024054340686659936298612726495319} a^{5} + \frac{440173843456493342327230291519011318450966594}{5168368839036024054340686659936298612726495319} a^{4} - \frac{35421365814505298534086887838903242709060768}{109965294447574979879589077870985076866521177} a^{3} - \frac{1388007821591276957060432660343130243155469528}{5168368839036024054340686659936298612726495319} a^{2} - \frac{2087153299002574697249349469363209183591316114}{5168368839036024054340686659936298612726495319} a - \frac{2152339721907680590831373737384767244949074370}{5168368839036024054340686659936298612726495319}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 349912271.201 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||