Normalized defining polynomial
\( x^{22} - 4 x^{21} - 7 x^{20} + 51 x^{19} - 66 x^{18} - 12 x^{17} + 232 x^{16} - 859 x^{15} + 2125 x^{14} - 4636 x^{13} + 4698 x^{12} + 14121 x^{11} - 59796 x^{10} + 97872 x^{9} - 63140 x^{8} - 96327 x^{7} + 342689 x^{6} - 501195 x^{5} + 415894 x^{4} - 177615 x^{3} + 22323 x^{2} + 2961 x + 47 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{225263899210989544348667749099893892489406421735523} a^{21} + \frac{42537820487941650525945118036314312627968731907112}{225263899210989544348667749099893892489406421735523} a^{20} + \frac{66026861404698800743940624639360307650631578997336}{225263899210989544348667749099893892489406421735523} a^{19} - \frac{30285314114942456351973338440992727859751461289793}{225263899210989544348667749099893892489406421735523} a^{18} + \frac{22446010104506475634576139244797340944467051271683}{225263899210989544348667749099893892489406421735523} a^{17} + \frac{20357153653583256725931577302656615162449059435334}{225263899210989544348667749099893892489406421735523} a^{16} + \frac{43753427009417790210238282939899859356146705119727}{225263899210989544348667749099893892489406421735523} a^{15} + \frac{107101462056984874231527469861781098014910204794100}{225263899210989544348667749099893892489406421735523} a^{14} + \frac{31986943484145386019041454049616379122960769320614}{225263899210989544348667749099893892489406421735523} a^{13} + \frac{112193210306766025843083648698264185365915260029393}{225263899210989544348667749099893892489406421735523} a^{12} - \frac{73556432647806138728124815952249869139456709106766}{225263899210989544348667749099893892489406421735523} a^{11} + \frac{8118674994874837020446445375683953333253473977362}{225263899210989544348667749099893892489406421735523} a^{10} - \frac{85085042322978035047483160754041427425808257211670}{225263899210989544348667749099893892489406421735523} a^{9} + \frac{68491264202622816789457773177688133283204165074047}{225263899210989544348667749099893892489406421735523} a^{8} + \frac{34276660360971182063087932722124272350759302771863}{225263899210989544348667749099893892489406421735523} a^{7} - \frac{26600510394215000362747524541183447557084706115143}{225263899210989544348667749099893892489406421735523} a^{6} + \frac{96301380159598814930198218073624059884760328035494}{225263899210989544348667749099893892489406421735523} a^{5} + \frac{21098960877486256102519901254582678948617709117828}{225263899210989544348667749099893892489406421735523} a^{4} + \frac{83805871517501947030846304152953858575140533417621}{225263899210989544348667749099893892489406421735523} a^{3} - \frac{8017451223299609915231123251176758824871513169099}{225263899210989544348667749099893892489406421735523} a^{2} - \frac{1647279035801630674500494420528381330528130209614}{4792848919382756262737611682976465797646945143309} a - \frac{1978602352494095934245727431211498152782943739126}{4792848919382756262737611682976465797646945143309}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320060666.813 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |