Normalized defining polynomial
\( x^{22} - 2 x^{21} + 4 x^{20} - 8 x^{19} - 30 x^{18} + 14 x^{17} - 166 x^{16} - 59 x^{15} - 135 x^{14} - 650 x^{13} + 196 x^{12} + 68 x^{11} + 1428 x^{10} + 4895 x^{9} + 8081 x^{8} + 8908 x^{7} + 10658 x^{6} + 7273 x^{5} - 1252 x^{4} - 1429 x^{3} + 121 x^{2} + 34 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{1637232890027778397248060015822326437} a^{21} + \frac{724991019353271198730792206745059262}{1637232890027778397248060015822326437} a^{20} + \frac{36545593412976303636492793498716299}{1637232890027778397248060015822326437} a^{19} + \frac{180511612867004294312907742181551699}{1637232890027778397248060015822326437} a^{18} + \frac{73089427842403552780103209433117214}{1637232890027778397248060015822326437} a^{17} - \frac{521352332951396914437498692298911217}{1637232890027778397248060015822326437} a^{16} - \frac{817647621779391850817688043442246271}{1637232890027778397248060015822326437} a^{15} + \frac{472459112619554499365978392972271095}{1637232890027778397248060015822326437} a^{14} - \frac{628111815937909822017910588583900503}{1637232890027778397248060015822326437} a^{13} - \frac{551749925336438084943205777659574753}{1637232890027778397248060015822326437} a^{12} + \frac{757719883931484700675576748458876651}{1637232890027778397248060015822326437} a^{11} + \frac{302830742293039414623263058831697078}{1637232890027778397248060015822326437} a^{10} - \frac{373573504885228976547160468765271305}{1637232890027778397248060015822326437} a^{9} - \frac{534546534427229846719780922543608110}{1637232890027778397248060015822326437} a^{8} + \frac{228727955142170218712076463141407159}{1637232890027778397248060015822326437} a^{7} + \frac{456248953913382074103610335771088008}{1637232890027778397248060015822326437} a^{6} + \frac{495450864526017244145897618835228450}{1637232890027778397248060015822326437} a^{5} - \frac{794259444045651153304028114177182556}{1637232890027778397248060015822326437} a^{4} + \frac{797957213422823788934197986446976328}{1637232890027778397248060015822326437} a^{3} + \frac{227939605266727629277372511890602409}{1637232890027778397248060015822326437} a^{2} + \frac{99241846648447428792371986493140733}{1637232890027778397248060015822326437} a + \frac{752751170906942346706615527962567579}{1637232890027778397248060015822326437}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 297447714.815 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||