Normalized defining polynomial
\( x^{22} - 2 x^{21} + 4 x^{20} - 31 x^{19} + 16 x^{18} - 9 x^{17} + 271 x^{16} + 378 x^{15} - 1469 x^{14} - 6 x^{13} - 3622 x^{12} + 12005 x^{11} + 853 x^{10} - 21762 x^{9} + 26642 x^{8} - 55561 x^{7} + 72873 x^{6} + 1477 x^{5} - 82097 x^{4} + 74034 x^{3} - 28997 x^{2} + 5416 x - 367 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{9293770151219698096245861734690797739374175460511} a^{21} - \frac{444388420701733581845953721685658659053633769435}{9293770151219698096245861734690797739374175460511} a^{20} - \frac{1609643444841586399771331733566719772966682666203}{9293770151219698096245861734690797739374175460511} a^{19} - \frac{38631904322953706248869734968866753259793008783}{9293770151219698096245861734690797739374175460511} a^{18} - \frac{3255696929746504101245359746302075822691946453753}{9293770151219698096245861734690797739374175460511} a^{17} + \frac{224044785794265210896324091942696398593175679519}{9293770151219698096245861734690797739374175460511} a^{16} - \frac{4588384186692746643441753086669575048704457401828}{9293770151219698096245861734690797739374175460511} a^{15} + \frac{2938640057110495942441916004130650402199883386318}{9293770151219698096245861734690797739374175460511} a^{14} - \frac{974270317013808009206263215194928940897854785138}{9293770151219698096245861734690797739374175460511} a^{13} + \frac{2375480790107671642955413452206529321921017110034}{9293770151219698096245861734690797739374175460511} a^{12} - \frac{3107038866404483878059725041211563623410191128134}{9293770151219698096245861734690797739374175460511} a^{11} - \frac{809246554069833782496057599660337079253674189740}{9293770151219698096245861734690797739374175460511} a^{10} + \frac{4406675882548304957068903487076290223165388912435}{9293770151219698096245861734690797739374175460511} a^{9} - \frac{762362972852055300203899675115466258487455179885}{9293770151219698096245861734690797739374175460511} a^{8} + \frac{3528954638145024913968927383061547593358604394583}{9293770151219698096245861734690797739374175460511} a^{7} + \frac{1479815183586489064736118037225878152386900446869}{9293770151219698096245861734690797739374175460511} a^{6} - \frac{3399419204613641239481161796028207618490661499151}{9293770151219698096245861734690797739374175460511} a^{5} + \frac{2606521865499539802679692847658026897842513907755}{9293770151219698096245861734690797739374175460511} a^{4} - \frac{836171380119626187002729300789288779224845061692}{9293770151219698096245861734690797739374175460511} a^{3} + \frac{2082093198161537349364928084931029281028383851445}{9293770151219698096245861734690797739374175460511} a^{2} - \frac{3348030203227827158314440430394576603934612546516}{9293770151219698096245861734690797739374175460511} a + \frac{3547368830350164192964532474278380938956380023137}{9293770151219698096245861734690797739374175460511}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 338850726.154 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.1 | $x^{2} - 47$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |