Normalized defining polynomial
\( x^{22} - 4 x^{21} - 7 x^{20} + 51 x^{19} - 66 x^{18} - 127 x^{17} + 255 x^{16} + 429 x^{15} - 934 x^{14} - 1094 x^{13} + 2996 x^{12} - 93 x^{11} - 5194 x^{10} - 3466 x^{9} + 9862 x^{8} + 3976 x^{7} - 11948 x^{6} - 2532 x^{5} + 6218 x^{4} + 3280 x^{3} + 565 x^{2} + 40 x + 1 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4098058278162967431271914143428729=23^{21}\cdot 47^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 47$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{47} a^{20} - \frac{15}{47} a^{19} - \frac{18}{47} a^{18} + \frac{22}{47} a^{17} - \frac{7}{47} a^{16} - \frac{21}{47} a^{15} - \frac{21}{47} a^{14} - \frac{15}{47} a^{13} + \frac{13}{47} a^{12} - \frac{7}{47} a^{11} - \frac{14}{47} a^{10} - \frac{23}{47} a^{9} + \frac{14}{47} a^{8} + \frac{5}{47} a^{7} + \frac{11}{47} a^{6} + \frac{14}{47} a^{5} + \frac{15}{47} a^{4} + \frac{9}{47} a^{3} + \frac{1}{47} a^{2} - \frac{7}{47} a - \frac{4}{47}$, $\frac{1}{415166355281277487264805871439941702200173} a^{21} - \frac{1918962207019687390580404890923189217946}{415166355281277487264805871439941702200173} a^{20} + \frac{89229871152463235357723253048351759837280}{415166355281277487264805871439941702200173} a^{19} - \frac{141514691199407824027343378679641353845741}{415166355281277487264805871439941702200173} a^{18} + \frac{117716466511233766898589411396343905907418}{415166355281277487264805871439941702200173} a^{17} - \frac{62217983925429012680786722786637266708836}{415166355281277487264805871439941702200173} a^{16} - \frac{93696678530095416519275674651468963607374}{415166355281277487264805871439941702200173} a^{15} - \frac{68763871650273147737529635296076957342660}{415166355281277487264805871439941702200173} a^{14} + \frac{2676640066820240624844844488274661991416}{415166355281277487264805871439941702200173} a^{13} - \frac{61611636996547495542492268603246098355622}{415166355281277487264805871439941702200173} a^{12} + \frac{194898258359018559705412625622109840020741}{415166355281277487264805871439941702200173} a^{11} - \frac{96091150996488188681920536662069207714211}{415166355281277487264805871439941702200173} a^{10} + \frac{118673229247784223325946940453238803821418}{415166355281277487264805871439941702200173} a^{9} + \frac{36667328093052807914595692506228202490576}{415166355281277487264805871439941702200173} a^{8} - \frac{44737726210235852000301813774020742993975}{415166355281277487264805871439941702200173} a^{7} + \frac{63894079562352864342694778807057609447122}{415166355281277487264805871439941702200173} a^{6} - \frac{99038726675777641117427861151536918656887}{415166355281277487264805871439941702200173} a^{5} + \frac{118867741435795592851547725726034662257652}{415166355281277487264805871439941702200173} a^{4} + \frac{45475534617674660286144138605418256958231}{415166355281277487264805871439941702200173} a^{3} + \frac{71074430936174050709945135568535651063259}{415166355281277487264805871439941702200173} a^{2} - \frac{41093276989486732009797474423740683755745}{415166355281277487264805871439941702200173} a + \frac{139342198942165619831858973846889346867540}{415166355281277487264805871439941702200173}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 345465500.198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 208 conjugacy class representatives for t22n28 are not computed |
| Character table for t22n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{23})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{2}$ | $22$ | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | $22$ | $22$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | R | $22$ | $22$ | $22$ | $22$ | ${\href{/LocalNumberField/43.11.0.1}{11} }^{2}$ | R | $22$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 23 | Data not computed | ||||||
| 47 | Data not computed | ||||||