Normalized defining polynomial
\( x^{22} - 11 x^{21} + 34 x^{20} + 45 x^{19} - 615 x^{18} + 1113 x^{17} + 3927 x^{16} - 16488 x^{15} - 21855 x^{14} + 323585 x^{13} - 735736 x^{12} - 995059 x^{11} + 7829136 x^{10} - 12148350 x^{9} - 7463010 x^{8} + 46944717 x^{7} - 57659157 x^{6} + 23519613 x^{5} + 1558365 x^{4} - 6085635 x^{3} + 3842001 x^{2} + 255054 x - 388581 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3361482266432075424650699941635131835937500=2^{2}\cdot 3^{20}\cdot 5^{21}\cdot 11^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $85.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} + \frac{1}{3} a^{11}$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{15} + \frac{1}{3} a^{12}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{16} + \frac{1}{3} a^{13}$, $\frac{1}{3} a^{20} - \frac{1}{3} a^{11}$, $\frac{1}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{21} + \frac{1028016317731468221013548486818652760515948527899158728747863974045769349325683758007}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{20} + \frac{15685780147314361800239343117471381872540552126507826580811438418418555575749437684304}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{19} + \frac{14188126039705208783351558347491380951761808269156313270867091495065546756426657957719}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{18} - \frac{17987867603190916169830995043790530418001625222811137708706995889108550931671234613165}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{17} + \frac{2602225055764473511430431693249031103928525705689892775094731720494007063134247858021}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{16} - \frac{54025453863389077676199323461294883635393973246777743298788344178981934798569107304805}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{15} - \frac{970114302334394791875965554199637951869352086104122117792697457024589019803929057080}{19650330386193735561089041395317205175392186245879115984180842964503939351429714031333} a^{14} - \frac{52610429751039518328946531587054763123331122838448724251034987513049043713539414722223}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{13} + \frac{2439860508446171772891682756161692520638323354096482184313119730420249651983823186112}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{12} - \frac{51624311100772623280796586672215277220883743669984246214799680657023273388777930910478}{137552312703356148927623289767220436227745303721153811889265900751527575460007998219331} a^{11} - \frac{14049569754914156518736702984977689039567876117817271315833739657740936720938479045557}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{10} - \frac{1672526199562328866473018820177587453216829998381950290253106250457371713215948446105}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{9} - \frac{13117901163226950972888786938014464648750988094976049239877045673900294942691480913100}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{8} + \frac{2892794272642914311327243164799744951296996037065808650502239644445220194303693053272}{6550110128731245187029680465105735058464062081959705328060280988167979783809904677111} a^{7} - \frac{22081755012686262504467360066616230816468907217712976245868821605047412375439060648031}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{6} - \frac{3775755475757855048418234977807024981304202682350445129221993762386468943310689136272}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{5} - \frac{16832255309008722145165750561516202820159619900958260244929074225375043481714601652127}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{4} - \frac{932765396776368650568157917986159381957656835661303130856701694652290862461217708637}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a^{3} - \frac{460185633773236086943148422732267258474973444715838004826937883411006913181650282923}{6550110128731245187029680465105735058464062081959705328060280988167979783809904677111} a^{2} - \frac{18201914001677603305390273190731595290352572286365100095925054009509945611688138596802}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777} a - \frac{2935411706578689794479201909242508571422252141184723405138671910020780687226185939491}{45850770901118716309207763255740145409248434573717937296421966917175858486669332739777}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 77506844638500 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 80 conjugacy class representatives for t22n36 are not computed |
| Character table for t22n36 is not computed |
Intermediate fields
| 11.11.123610132462587890625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | $22$ | ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $3$ | 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ |
| 3.11.10.1 | $x^{11} - 3$ | $11$ | $1$ | $10$ | $C_{11}:C_5$ | $[\ ]_{11}^{5}$ | |
| 5 | Data not computed | ||||||
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |