Normalized defining polynomial
\( x^{22} + 43 x^{20} - 666 x^{18} - 30595 x^{16} + 66169 x^{14} + 1320239 x^{12} - 1993079 x^{10} - 13734822 x^{8} + 23182188 x^{6} - 308103 x^{4} - 4415737 x^{2} - 673587 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{28381878506485563388919522700959962783490393} a^{20} + \frac{8833743966136704012291785782880500965396066}{28381878506485563388919522700959962783490393} a^{18} + \frac{6569360407442365344893501188252287880442758}{28381878506485563388919522700959962783490393} a^{16} - \frac{9161727211477017539217778206739609873547718}{28381878506485563388919522700959962783490393} a^{14} + \frac{13788551391768023305434994494288675969463985}{28381878506485563388919522700959962783490393} a^{12} + \frac{9135884160459396628066353559718257321732745}{28381878506485563388919522700959962783490393} a^{10} + \frac{3361059340677568596016345805990246539643948}{28381878506485563388919522700959962783490393} a^{8} + \frac{11557268226763857248634471370253198261585180}{28381878506485563388919522700959962783490393} a^{6} - \frac{2405106120532557930159983030782355589638730}{28381878506485563388919522700959962783490393} a^{4} - \frac{3262600268033380295421551321793632279623790}{28381878506485563388919522700959962783490393} a^{2} - \frac{8991921789818550614415630159504755939180889}{28381878506485563388919522700959962783490393}$, $\frac{1}{85145635519456690166758568102879888350471179} a^{21} - \frac{19548134540348859376627736918079461818094327}{85145635519456690166758568102879888350471179} a^{19} + \frac{11650412971309309577937674629737416887977717}{28381878506485563388919522700959962783490393} a^{17} + \frac{19220151295008545849701744494220352909942675}{85145635519456690166758568102879888350471179} a^{15} + \frac{42170429898253586694354517195248638752954378}{85145635519456690166758568102879888350471179} a^{13} + \frac{9135884160459396628066353559718257321732745}{85145635519456690166758568102879888350471179} a^{11} + \frac{31742937847163131984935868506950209323134341}{85145635519456690166758568102879888350471179} a^{9} - \frac{5608203426573902046761683776902254840635071}{28381878506485563388919522700959962783490393} a^{7} - \frac{801702040177519310053327676927451863212910}{28381878506485563388919522700959962783490393} a^{5} + \frac{8373092746150727697832657126388776834622201}{28381878506485563388919522700959962783490393} a^{3} + \frac{19389956716667012774503892541455206844309504}{85145635519456690166758568102879888350471179} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 290534616688000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||