Normalized defining polynomial
\( x^{22} - 40 x^{20} - 4187 x^{18} - 86459 x^{16} - 419737 x^{14} + 4565971 x^{12} + 45230383 x^{10} + 7236576 x^{8} - 744630181 x^{6} - 580648009 x^{4} + 3448765440 x^{2} - 54560547 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3} a^{19} - \frac{1}{3} a^{17} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{1992980027601696525164182042988045922195500137846509} a^{20} + \frac{499422035796407192911004882819433568461753200525936}{1992980027601696525164182042988045922195500137846509} a^{18} + \frac{532590342194026877029942302469323862942789572188506}{1992980027601696525164182042988045922195500137846509} a^{16} + \frac{155240999125948076394877522788618887404212054255217}{1992980027601696525164182042988045922195500137846509} a^{14} + \frac{864880620577556614365100679095116009647846470662788}{1992980027601696525164182042988045922195500137846509} a^{12} - \frac{539493360110341473418414752904818597774109432739159}{1992980027601696525164182042988045922195500137846509} a^{10} - \frac{246268980155243080426135693567210516675814051588804}{1992980027601696525164182042988045922195500137846509} a^{8} + \frac{85926377674295994347902409871585578408832087629627}{221442225289077391684909115887560658021722237538501} a^{6} - \frac{749414385745465592579067870520118829098265006811864}{1992980027601696525164182042988045922195500137846509} a^{4} - \frac{261199867302570758989797982964363091771235120672027}{1992980027601696525164182042988045922195500137846509} a^{2} - \frac{21904752213625737392238552428773000031721782658662}{221442225289077391684909115887560658021722237538501}$, $\frac{1}{17936820248415268726477638386892413299759501240618581} a^{21} + \frac{499422035796407192911004882819433568461753200525936}{17936820248415268726477638386892413299759501240618581} a^{19} - \frac{7439329768212759223626785869482859825839210979197530}{17936820248415268726477638386892413299759501240618581} a^{17} - \frac{5823699083679141499097668606175518879182288359284310}{17936820248415268726477638386892413299759501240618581} a^{15} - \frac{5114059462227532961127445449869021756938653942876739}{17936820248415268726477638386892413299759501240618581} a^{13} + \frac{7432426750296444627238313419047365091007891118646877}{17936820248415268726477638386892413299759501240618581} a^{11} + \frac{7725651130251543020230592478384973172106186499797232}{17936820248415268726477638386892413299759501240618581} a^{9} - \frac{799842523482013572391734053678657053678056862524377}{1992980027601696525164182042988045922195500137846509} a^{7} + \frac{3236545669457927457749296215455973015292735268881154}{17936820248415268726477638386892413299759501240618581} a^{5} + \frac{7710720243104215341666930188987820597010765430714009}{17936820248415268726477638386892413299759501240618581} a^{3} + \frac{642421923653606437662488795233908974033444929956841}{1992980027601696525164182042988045922195500137846509} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 263472131519000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||