Normalized defining polynomial
\( x^{22} - 45 x^{20} - 1917 x^{18} - 19 x^{16} + 630240 x^{14} + 8584323 x^{12} + 43408091 x^{10} + 57022357 x^{8} - 144688750 x^{6} - 213344603 x^{4} + 32631548 x^{2} - 673587 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(309044195601903421945287518629445365867259019395072=2^{22}\cdot 74843^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 74843$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5377723508641384320181246191419310130529162099} a^{20} - \frac{1053564612080264549124670106393053977366123391}{5377723508641384320181246191419310130529162099} a^{18} + \frac{511979977067143638576548996032184438761630406}{5377723508641384320181246191419310130529162099} a^{16} - \frac{555671936801562544149228988611738106767233106}{5377723508641384320181246191419310130529162099} a^{14} - \frac{834351631119402295485262743466047098383393422}{5377723508641384320181246191419310130529162099} a^{12} + \frac{718159528853741574609909078648482985181655302}{5377723508641384320181246191419310130529162099} a^{10} + \frac{539113974411373117103191397745669479801769661}{5377723508641384320181246191419310130529162099} a^{8} - \frac{1453205126821180045558356577053447371521613708}{5377723508641384320181246191419310130529162099} a^{6} - \frac{1727251735063838513839118317645621543315971953}{5377723508641384320181246191419310130529162099} a^{4} - \frac{860703030074089042362328966217961810153820731}{5377723508641384320181246191419310130529162099} a^{2} - \frac{251432198530098089930485653927235004363698082}{5377723508641384320181246191419310130529162099}$, $\frac{1}{16133170525924152960543738574257930391587486297} a^{21} - \frac{2143762706907216289768638765937454702631761830}{5377723508641384320181246191419310130529162099} a^{19} - \frac{1621914510524746893868232398462375230589177231}{5377723508641384320181246191419310130529162099} a^{17} + \frac{4822051571839821776032017202807572023761928993}{16133170525924152960543738574257930391587486297} a^{15} - \frac{278117210373134098495087581155349032794464474}{5377723508641384320181246191419310130529162099} a^{13} + \frac{2031961012498375298263718423355931038570272467}{5377723508641384320181246191419310130529162099} a^{11} - \frac{4838609534230011203078054793673640650727392438}{16133170525924152960543738574257930391587486297} a^{9} - \frac{1453205126821180045558356577053447371521613708}{16133170525924152960543738574257930391587486297} a^{7} - \frac{7104975243705222834020364509064931673845134052}{16133170525924152960543738574257930391587486297} a^{5} - \frac{6238426538715473362543575157637271940682982830}{16133170525924152960543738574257930391587486297} a^{3} - \frac{5629155707171482410111731845346545134892860181}{16133170525924152960543738574257930391587486297} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240723490485000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1351680 |
| The 112 conjugacy class representatives for t22n42 are not computed |
| Character table for t22n42 is not computed |
Intermediate fields
| 11.11.31376518243389673201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 74843 | Data not computed | ||||||