Normalized defining polynomial
\( x^{22} - 77 x^{20} + 385 x^{18} + 56595 x^{16} - 405328 x^{14} - 3856006 x^{12} + 12948936 x^{10} + 100520266 x^{8} - 11911361 x^{6} - 778886801 x^{4} - 1356442549 x^{2} - 697540921 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2974455940506282473588147332653722244263440285696=2^{40}\cdot 7^{16}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $159.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4}$, $\frac{1}{7} a^{5}$, $\frac{1}{7} a^{6}$, $\frac{1}{7} a^{7}$, $\frac{1}{49} a^{8}$, $\frac{1}{49} a^{9}$, $\frac{1}{49} a^{10}$, $\frac{1}{1078} a^{11} - \frac{1}{98} a^{10} - \frac{1}{98} a^{9} - \frac{1}{98} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{7546} a^{12} - \frac{1}{98} a^{8} - \frac{1}{14} a^{4} - \frac{1}{2}$, $\frac{1}{7546} a^{13} - \frac{1}{98} a^{9} - \frac{1}{14} a^{5} - \frac{1}{2} a$, $\frac{1}{7546} a^{14} - \frac{1}{98} a^{10} - \frac{1}{14} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{7546} a^{15} - \frac{1}{98} a^{10} - \frac{1}{98} a^{9} - \frac{1}{98} a^{8} - \frac{1}{14} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{52822} a^{16} - \frac{1}{2}$, $\frac{1}{52822} a^{17} - \frac{1}{2} a$, $\frac{1}{52822} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{52822} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{977751497581249735147795838} a^{20} - \frac{822884739085606469425}{139678785368749962163970834} a^{18} + \frac{988520281402994989571}{139678785368749962163970834} a^{16} - \frac{1115855972996079182157}{19954112195535708880567262} a^{14} - \frac{137450377021949291467}{9977056097767854440283631} a^{12} + \frac{335001714398442828481}{259144314227736478968406} a^{10} - \frac{322628522663872659699}{129572157113868239484203} a^{8} + \frac{1269492850122032883035}{37020616318248068424058} a^{6} + \frac{1865010944626865155797}{37020616318248068424058} a^{4} + \frac{1013808511374073255832}{2644329737017719173147} a^{2} + \frac{1936601529950779857265}{5288659474035438346294}$, $\frac{1}{6844260483068748146034570866} a^{21} - \frac{4377936975069381994433}{488875748790624867573897919} a^{19} + \frac{988520281402994989571}{977751497581249735147795838} a^{17} - \frac{38369241938916309748}{1425293728252550634326233} a^{15} - \frac{137450377021949291467}{69839392684374981081985417} a^{13} - \frac{303426453762163314725}{1425293728252550634326233} a^{11} + \frac{2321701214353846513448}{907005099797077676389421} a^{9} - \frac{3331748180465562318203}{129572157113868239484203} a^{7} - \frac{3423648529408573190497}{259144314227736478968406} a^{5} - \frac{4274850962661365090462}{18510308159124034212029} a^{3} - \frac{13929376892155535181617}{37020616318248068424058} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48791434660600000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | $20{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |