Normalized defining polynomial
\( x^{22} - 2 x^{21} - x^{20} - 27 x^{19} - 123 x^{18} + 557 x^{17} - 15 x^{16} + 3931 x^{15} - 14708 x^{14} + 14397 x^{13} - 67597 x^{12} + 333066 x^{11} - 708951 x^{10} + 533647 x^{9} - 501187 x^{8} + 1877976 x^{7} + 4952836 x^{6} - 26543542 x^{5} + 33271030 x^{4} - 4722738 x^{3} - 22835725 x^{2} + 20238011 x - 5825245 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29391360462703563245733396281479720218577=1297^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{16} - \frac{1}{5} a^{13} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{16} - \frac{1}{5} a^{14} - \frac{2}{5} a^{13} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{6} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{19} + \frac{2}{5} a^{16} - \frac{1}{5} a^{15} - \frac{2}{5} a^{14} - \frac{1}{5} a^{13} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{55} a^{20} + \frac{4}{55} a^{19} - \frac{1}{11} a^{18} - \frac{4}{55} a^{17} + \frac{4}{55} a^{16} - \frac{1}{5} a^{15} + \frac{16}{55} a^{14} - \frac{2}{11} a^{13} + \frac{8}{55} a^{12} + \frac{7}{55} a^{11} + \frac{14}{55} a^{10} - \frac{1}{11} a^{9} - \frac{27}{55} a^{8} - \frac{7}{55} a^{7} + \frac{27}{55} a^{6} - \frac{3}{11} a^{5} - \frac{23}{55} a^{4} - \frac{7}{55} a^{3} - \frac{24}{55} a^{2} + \frac{2}{11} a - \frac{1}{11}$, $\frac{1}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{21} - \frac{467417387810368815697937759973188755043657602088380992890085189529241624}{111955837692658641911453034892487276453213212606705121561610317626505066305} a^{20} - \frac{12411671852048492715553721386866034883392500485639498837231427919830341146}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{19} + \frac{17345886588913928198201430908373701609510333112426343183663541847751927196}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{18} - \frac{31436101539132305111759910479472440826334417882539920035224504991550811396}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{17} + \frac{1004306140512924746322645991285977014928349695711966229269006260502651787}{3025833451152936267877109051148304769005762502883922204367846422337974765} a^{16} - \frac{15720171227712702785382089415589527267595601023921715429369664528919723643}{111955837692658641911453034892487276453213212606705121561610317626505066305} a^{15} + \frac{200370270566529060217724773462221994072200940205329594920767873832883788416}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{14} + \frac{16835949612923197188238338773611434594576147468303144907190936873460039439}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{13} - \frac{15045277863952029856476801679742604114329262284478057676038037487157878794}{111955837692658641911453034892487276453213212606705121561610317626505066305} a^{12} + \frac{177390404856893126402435845928396471845850041124059430565766186904568375333}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{11} - \frac{197769694484650496864454099755365660909839561336601074642925847623926387713}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{10} - \frac{90875003004780352754053579202137569751074570768998186274554437611393800797}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{9} + \frac{252890406070359150248915901043893236430509566447080147213827273709336351338}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{8} + \frac{163736149516106194620579439559263704673837738533073274178879127818590521449}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{7} + \frac{54133311998546920417919435573457032343510009541417125960938807219101940164}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{6} - \frac{177978274867770808567146252142108809722573375147934250190061168607878959656}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{5} + \frac{226225094176281758835740273813717363557105900526901381331786636312723482941}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{4} - \frac{72068885465127711021758109421082055340862940479560702366873770681134310608}{559779188463293209557265174462436382266066063033525607808051588132525331525} a^{3} - \frac{11385025387797716637287421293100214650626801971759988835419984799802611454}{50889017133026655414296834042039671115096914821229600709822871648411393775} a^{2} + \frac{222354472189655010526522157246416173433499145100177367486316768793193779392}{559779188463293209557265174462436382266066063033525607808051588132525331525} a - \frac{40878574461510601621342810375582889437228763318714526993228089439598850223}{111955837692658641911453034892487276453213212606705121561610317626505066305}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2350696563630 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||