Normalized defining polynomial
\( x^{22} - 2 x^{21} - 5 x^{20} + 63 x^{19} - 277 x^{18} - 763 x^{17} + 1430 x^{16} - 4519 x^{15} - 12215 x^{14} + 55828 x^{13} + 211576 x^{12} + 329486 x^{11} + 565827 x^{10} + 1673022 x^{9} + 1315125 x^{8} - 4385689 x^{7} - 9574393 x^{6} - 2442233 x^{5} + 9228793 x^{4} + 6912958 x^{3} - 1578970 x^{2} - 2159051 x - 187717 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29391360462703563245733396281479720218577=1297^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{11} a^{20} + \frac{5}{11} a^{19} + \frac{1}{11} a^{17} + \frac{5}{11} a^{16} + \frac{1}{11} a^{15} + \frac{5}{11} a^{13} - \frac{3}{11} a^{12} - \frac{3}{11} a^{11} + \frac{5}{11} a^{10} - \frac{4}{11} a^{9} - \frac{4}{11} a^{8} + \frac{3}{11} a^{7} - \frac{4}{11} a^{6} + \frac{3}{11} a^{5} + \frac{5}{11} a^{4} - \frac{2}{11} a^{3} + \frac{3}{11} a^{2} + \frac{1}{11} a - \frac{3}{11}$, $\frac{1}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{21} - \frac{532281914729645402554057755500422909080326408632746595422418259014422318559383}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{20} - \frac{2970404247429989701560734221498714468328998267838605248084806303451886959606957}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{19} - \frac{470779080370656174967693428028921825723427060076604048992375008448624732921039}{2368086204246224175099339989402715522496380951961588450801067354372933501376175} a^{18} - \frac{4425547243580249789986219306755731352627339274309588045920562576890322551715482}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{17} + \frac{2580003885656695161564625441276179701345346491341201571679757305299665449109879}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{16} - \frac{429206573222022882652985476857063147682997066707953177583126993508642165287844}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{15} - \frac{903381605246525703516873606633228035880605578427934722942791201523959073295916}{2368086204246224175099339989402715522496380951961588450801067354372933501376175} a^{14} - \frac{100671889417301528768623652411431674952134337358870959250274667840447981435477}{215280564022384015918121817218428683863307359269235313709187941306630318306925} a^{13} + \frac{4861310746615139471538522209474745332280213631400459216326286118998374887610488}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{12} + \frac{5298596016843456439438868370379680781745243008344571173575619876678755552792523}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{11} - \frac{1246701956407618514342295613932615194746518196650869043603066000714232759012277}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{10} - \frac{3769510747806535412907900031126324451602996600347008032250604105521512328576636}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{9} + \frac{196580855247297079812475604009040960164643012912956698404713762869351143099939}{696495942425360051499805879236092800734229691753408367882666868933215735698875} a^{8} - \frac{214244589201797724335527353789698251500897382090488478421290512411847782545048}{1076402820111920079590609086092143419316536796346176568545939706533151591534625} a^{7} - \frac{1559333723090469803496544969848367062056305597225520252480919834790770767894646}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{6} - \frac{2744298614938163199295495671718444318464274825369336956251423195709987918278642}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{5} + \frac{2874110437083299603923542998231541813009204020452115565017894389145983120899619}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{4} + \frac{5881700808971340333052854364622689339087633010875084258714541922471704797417954}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{3} - \frac{1718684804613911539913564832046444828417848761953149058734068260509398383171016}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a^{2} - \frac{1804098323087494113210154899994741203313406986975533837576125302113908167123374}{11840431021231120875496699947013577612481904759807942254005336771864667506880875} a - \frac{1621445040196331899091381654610217234945443097578205654947594515383065085821182}{11840431021231120875496699947013577612481904759807942254005336771864667506880875}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1657086006910 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||