Normalized defining polynomial
\( x^{22} - 4 x^{21} - 25 x^{20} + 187 x^{19} - 427 x^{18} - 1387 x^{17} + 11048 x^{16} - 19578 x^{15} - 51688 x^{14} + 291735 x^{13} - 208406 x^{12} - 1486531 x^{11} + 3652116 x^{10} + 922479 x^{9} - 15631207 x^{8} + 22761255 x^{7} - 1886833 x^{6} - 28646815 x^{5} + 31917632 x^{4} - 11208552 x^{3} - 2785752 x^{2} + 2849336 x - 485809 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29391360462703563245733396281479720218577=1297^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{5} a^{19} - \frac{1}{5} a^{18} - \frac{2}{5} a^{17} + \frac{2}{5} a^{16} + \frac{1}{5} a^{14} - \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{85} a^{20} - \frac{3}{85} a^{19} + \frac{8}{17} a^{18} + \frac{6}{85} a^{17} + \frac{21}{85} a^{16} + \frac{11}{85} a^{15} - \frac{42}{85} a^{14} - \frac{2}{85} a^{13} + \frac{7}{85} a^{12} - \frac{29}{85} a^{11} - \frac{3}{17} a^{10} + \frac{36}{85} a^{9} + \frac{8}{85} a^{8} - \frac{18}{85} a^{7} - \frac{14}{85} a^{6} - \frac{5}{17} a^{5} - \frac{28}{85} a^{4} - \frac{41}{85} a^{3} + \frac{6}{85} a^{2} + \frac{6}{17} a - \frac{2}{5}$, $\frac{1}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{21} - \frac{4026402827430761426977753755994520235315033952502499291783439190041170154052}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{20} - \frac{69768117890957410656244426695353224923149235873957680157443183758252521738753}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{19} - \frac{310971806078339617638873611665703554833024237427157490966348732959694317660244}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{18} + \frac{250536858585253762402912456026379158850659603656539594993811078384341862237982}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{17} - \frac{199182166773577252863564433190282031522548043623712811578037237904289514793428}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{16} + \frac{623277840027481568815018127448826003231897816131406826598914290137973607870419}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{15} - \frac{369829045294475767516583021337410962168432767230122095014009264776239685072}{2299160127769216196885676068458811287745850993295108987621657339422368973155} a^{14} - \frac{42258458271644903791773338221360239701757070760205079379422557213242558462158}{334297882577644035027177300353911161238246734425108846800188977152012448696737} a^{13} - \frac{345269437604254278079410057532665482938356178085745392970409790159248664054517}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{12} + \frac{224510300790722202888542314716066746645823399903673402186674471716624231105571}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{11} - \frac{807590983467804178656946825435473848421553587028548591911507489417828090727989}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{10} - \frac{8681533410145519478702521481925643819854950632024188197666616051243997007226}{40768034460688296954533817116330629419298382246964493512218167945367371792285} a^{9} + \frac{137697330223348981151447584453535419236320477202799154550658432825808246003905}{334297882577644035027177300353911161238246734425108846800188977152012448696737} a^{8} - \frac{539583441837463531802463133392697042597465669587300527685278579224712345771077}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{7} - \frac{381077505975948268270826955154119662357990036686370586490205374557252094373289}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{6} + \frac{751286480523032836289814580600524535926834513723499834768826990505547623764107}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{5} - \frac{707768975591905126667175495759346206633832681071325992739882295346487274555474}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{4} - \frac{147191370190035627502667496169405937207110981817246103430151744866682416363592}{334297882577644035027177300353911161238246734425108846800188977152012448696737} a^{3} + \frac{275316878207569636055140014206391909521941087297548657741783304565301336576511}{1671489412888220175135886501769555806191233672125544234000944885760062243483685} a^{2} + \frac{46502822458827243317693661163360151013750978176498737081179369201517166132908}{98322906640483539713875676574679753305366686595620249058879110927062484910805} a - \frac{972655335231158239793030269821389386016196781427682832499566117066459073912}{2398119674158135114972577477431213495252846014527323147777539290903963046605}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 558986762171 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{3}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||