Normalized defining polynomial
\( x^{22} - 7 x^{21} + 20 x^{20} - 37 x^{19} - 6 x^{18} - 96 x^{17} - 601 x^{16} + 4887 x^{15} - 10409 x^{14} + 17140 x^{13} + 61830 x^{12} - 229061 x^{11} + 473100 x^{10} - 93708 x^{9} - 2265797 x^{8} + 4028576 x^{7} - 8303052 x^{6} + 265807 x^{5} + 2580052 x^{4} - 854179 x^{3} + 69971 x^{2} + 4729 x - 635 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29391360462703563245733396281479720218577=1297^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{21} + \frac{59072187243186312357868401199403802259290200341947745972435296869042738347}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{20} - \frac{35263365996734197557558006753895476016856988697618362666611698365869207831}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{19} + \frac{48424168236333770791891005974112116322372664954397891836587033022381570325}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{18} - \frac{58759326187825393300889650976972122955276369077895018826442732158887683873}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{17} + \frac{41221868317181515966807293429211599267877904633221166791521074597922684422}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{16} - \frac{39940671637780613603738045259973218184997302088533494084163064897120189533}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{15} + \frac{41345302800995615473518858804451142740051232844460910517493607260051475268}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{14} - \frac{19939473444213900185309451939005923447221046681480114858094956296266106351}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{13} - \frac{42044950946452491840509822886712330277108911614210495429427061816284823892}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{12} + \frac{86813820091516345320978968859376897006577422751601763908540841465995710168}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{11} - \frac{69287311629733614689014875035512498445116003499323405850782879320076901890}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{10} + \frac{4101347517253320813755681867435925778344347217472047763153344124355618631}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{9} - \frac{43933167916529000246077217339627856948971501141147684462009193536676876587}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{8} - \frac{22942666985770248635310802546213141929180863955237822671049944259085325922}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{7} + \frac{79874158171155493081432010308550671632899846639866949900953046805172069250}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{6} + \frac{68924241255316412583899137027875327530240983929855911447324144484872238199}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{5} - \frac{36535318993653290784152736077832525469463954932323392702562971880086449851}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{4} + \frac{22752798950538242148502486089789013329527138215549762716219910193945920983}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{3} - \frac{3963552622379764984443001789307418740267339879928607538482192084232010315}{173939615546290052952764694815258025765102258094873584234469962151341387353} a^{2} - \frac{16396839336717302128763103914291882960734505299396811966785249375377593394}{173939615546290052952764694815258025765102258094873584234469962151341387353} a + \frac{39598138147152979168717114555190982396108745823220118279941908993563525750}{173939615546290052952764694815258025765102258094873584234469962151341387353}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2022071533720 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n29 are not computed |
| Character table for t22n29 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||