Normalized defining polynomial
\( x^{22} - 33 x^{20} - 66 x^{19} + 319 x^{18} + 1342 x^{17} + 275 x^{16} - 6336 x^{15} - 7546 x^{14} + 18568 x^{13} + 44792 x^{12} - 23260 x^{11} - 155342 x^{10} - 59884 x^{9} + 294888 x^{8} + 78716 x^{7} - 1479335 x^{6} - 3296436 x^{5} - 3200659 x^{4} - 1325390 x^{3} - 1397 x^{2} + 107514 x + 585 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2765268880252910314143797350670221340311552=2^{34}\cdot 7^{11}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{4}$, $\frac{1}{317893280506593571851106175727948135064276484604667566} a^{21} + \frac{1260459230278503601938665732372024311216077486412762}{52982213417765595308517695954658022510712747434111261} a^{20} - \frac{5964886610650122549721018454599742333728133374153916}{52982213417765595308517695954658022510712747434111261} a^{19} - \frac{14480115236978191791513480185518120649362995216381835}{105964426835531190617035391909316045021425494868222522} a^{18} + \frac{20969468049714431494014522808229447048829073251376787}{158946640253296785925553087863974067532138242302333783} a^{17} - \frac{30655789277351583074924227687559930467852925772725056}{158946640253296785925553087863974067532138242302333783} a^{16} - \frac{12662426491446054004399485240782640867049504564479170}{158946640253296785925553087863974067532138242302333783} a^{15} + \frac{6745701306290589252814704338217146890333403408220131}{105964426835531190617035391909316045021425494868222522} a^{14} + \frac{46701899506949773817035515884522030824960541381786423}{317893280506593571851106175727948135064276484604667566} a^{13} - \frac{19609531763594031706777331549467793398318508664603479}{317893280506593571851106175727948135064276484604667566} a^{12} + \frac{15576232750179759010731701879135039656525456898075315}{317893280506593571851106175727948135064276484604667566} a^{11} + \frac{28523536014573215201107643546647423089881227451013118}{158946640253296785925553087863974067532138242302333783} a^{10} + \frac{59169968445192225445180489281015926621215275252096575}{158946640253296785925553087863974067532138242302333783} a^{9} - \frac{43044550626839175050202668875464055709422753513102025}{158946640253296785925553087863974067532138242302333783} a^{8} - \frac{17048187489163039862790692125456380077363130295384347}{52982213417765595308517695954658022510712747434111261} a^{7} + \frac{28685657720835901351003751282784489418636428425281457}{317893280506593571851106175727948135064276484604667566} a^{6} - \frac{5256949610118371918258241818629991344496821350414304}{158946640253296785925553087863974067532138242302333783} a^{5} + \frac{4517807510919759193021982548891518037080061991315179}{105964426835531190617035391909316045021425494868222522} a^{4} + \frac{4536515172314112257092201412363745404770758240988631}{317893280506593571851106175727948135064276484604667566} a^{3} + \frac{10351590318449924473643923372979022998713209863518789}{317893280506593571851106175727948135064276484604667566} a^{2} - \frac{31687322213199837572106530442668821323968932766649217}{158946640253296785925553087863974067532138242302333783} a - \frac{21361008099321362582908615140030625581984344621475580}{52982213417765595308517695954658022510712747434111261}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 88719177660800 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 225280 |
| The 88 conjugacy class representatives for t22n37 are not computed |
| Character table for t22n37 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }$ | $22$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{7}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||