Normalized defining polynomial
\( x^{22} - 4 x^{21} - 92 x^{20} + 978 x^{19} - 23031 x^{18} + 208542 x^{17} + 3327324 x^{16} - 36397800 x^{15} - 19963545 x^{14} - 406653528 x^{13} - 16539946488 x^{12} + 256034067942 x^{11} + 682357346031 x^{10} - 13494358927986 x^{9} + 9822827363220 x^{8} + 261815058820176 x^{7} - 813912422758992 x^{6} - 647257611403968 x^{5} + 8751031478070272 x^{4} - 24165278101734848 x^{3} + 30990808995877088 x^{2} - 13115399746724928 x - 2634468582334464 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(254171926510889578368436897006059571070510600002237220914603229184=2^{30}\cdot 3^{28}\cdot 7^{4}\cdot 23^{4}\cdot 137^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $939.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 23, 137$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{11} + \frac{1}{6} a^{9} + \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{12} a^{12} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{2} a^{5} + \frac{5}{12} a^{4} + \frac{1}{6} a^{2}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a$, $\frac{1}{12} a^{14} - \frac{1}{6} a^{8} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{12} a^{15} - \frac{1}{6} a^{9} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3}$, $\frac{1}{12} a^{16} - \frac{1}{6} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{24} a^{17} - \frac{1}{24} a^{13} - \frac{1}{24} a^{9} + \frac{1}{6} a^{7} - \frac{1}{2} a^{6} - \frac{7}{24} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3}$, $\frac{1}{24} a^{18} - \frac{1}{24} a^{14} - \frac{1}{24} a^{10} + \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{7}{24} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3} a^{4}$, $\frac{1}{48} a^{19} - \frac{1}{24} a^{16} + \frac{1}{48} a^{15} - \frac{1}{24} a^{14} - \frac{1}{48} a^{11} + \frac{1}{12} a^{10} - \frac{1}{4} a^{9} + \frac{5}{24} a^{8} + \frac{23}{48} a^{7} - \frac{3}{8} a^{6} - \frac{1}{6} a^{5} - \frac{1}{6} a^{4} + \frac{1}{6} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{2016} a^{20} - \frac{1}{168} a^{18} + \frac{1}{336} a^{17} + \frac{19}{672} a^{16} - \frac{13}{336} a^{15} - \frac{1}{56} a^{14} - \frac{1}{168} a^{13} - \frac{1}{224} a^{12} - \frac{3}{56} a^{11} + \frac{19}{84} a^{10} - \frac{53}{336} a^{9} - \frac{41}{224} a^{8} + \frac{3}{16} a^{7} - \frac{5}{168} a^{6} - \frac{17}{168} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3} - \frac{7}{18} a^{2} - \frac{4}{21} a - \frac{2}{7}$, $\frac{1}{261198760289684633926635798859925789675282211354036004174053527014837231135804501121741769488162777624905863208415929059666133858781361658211794449621610799558537280} a^{21} + \frac{25462983319371853391616789037551224728389846591150534568470908084929281245552688402051622893727219283739813320902529269564676662198055846370339851075524913485871}{130599380144842316963317899429962894837641105677018002087026763507418615567902250560870884744081388812452931604207964529833066929390680829105897224810805399779268640} a^{20} + \frac{24766572358476514964600879735003420627635485979721495759161780660606649657467479448394333750683667319646557963489172685361111106394101572501429539700522658920329}{4353312671494743898777263314332096494588036855900600069567558783580620518930075018695696158136046293748431053473598817661102230979689360970196574160360179992642288} a^{19} + \frac{259473222580038029536968285372659341001838982816987725676479606508698164536759310070220478584108098720202727682472409120481973457767565465555526280465283786096363}{43533126714947438987772633143320964945880368559006000695675587835806205189300750186956961581360462937484310534735988176611022309796893609701965741603601799926422880} a^{18} + \frac{44688247692403274356668904098867588018335758459054554630537628092598685623623709923322008636811679134546586543544483460410838133466623746694962388284687820242919}{87066253429894877975545266286641929891760737118012001391351175671612410378601500373913923162720925874968621069471976353222044619593787219403931483207203599852845760} a^{17} + \frac{103057640173641157299093840482673816697414318027127716063766342363203302030715228349695633388332120984241870059269211462620841367218774914089177358615939313876013}{5441640839368429873471579142915120618235046069875750086959448479475775648662593773369620197670057867185538816841998522076377788724611701212745717700450224990802860} a^{16} - \frac{56564169235979195202040973281867061513072419800378485657242948116603383434211031678245686017486517339415630605873656468797059560375080851253824569622675161594161}{3627760559578953248981052761943413745490030713250500057972965652983850432441729182246413465113371911457025877894665681384251859149741134141830478466966816660535240} a^{15} + \frac{8478264581371845903711167167340146995277519914174966340141516098016614017560639792998287679362005148883718846108863114990601347627281049687530277217986912740119}{3627760559578953248981052761943413745490030713250500057972965652983850432441729182246413465113371911457025877894665681384251859149741134141830478466966816660535240} a^{14} - \frac{3309659619033869555964138509642963615610875268185078216740303531758330869771362533054993669304809151934575280088263626319275281912341575246280955140208038066728379}{87066253429894877975545266286641929891760737118012001391351175671612410378601500373913923162720925874968621069471976353222044619593787219403931483207203599852845760} a^{13} + \frac{272697209522443441228130904381907290783637436962581789113655148659772067076996627756271745111200356891589312150014048236696598996844097368883833110685724471647165}{8706625342989487797554526628664192989176073711801200139135117567161241037860150037391392316272092587496862106947197635322204461959378721940393148320720359985284576} a^{12} - \frac{100853791810202196780227012341478896803493754753889481973473090598936661592270348954383666359130317664872279812932213330964956626760548303956029865424982512468861}{1554754525533837106706165469404320176638584591393071453416985279850221613903598220962748627905730819195868233383428149164679368207031914632213062200128635711657960} a^{11} + \frac{3021632724639199831282949980797720637165008340552110096000871137677713902046976007118067139478735891573935711692418837424215002143403235019413206269111407200495389}{43533126714947438987772633143320964945880368559006000695675587835806205189300750186956961581360462937484310534735988176611022309796893609701965741603601799926422880} a^{10} + \frac{3545600491163467974323169807748414197751736598797841607957197271814704437380566322134663588856405160567014943916806966676555594404636046690184256798229469212238173}{17413250685978975595109053257328385978352147423602400278270235134322482075720300074782784632544185174993724213894395270644408923918757443880786296641440719970569152} a^{9} + \frac{362188929247651926405173971871557591517171048643757139401610927827980918718049440176220020838991620640554910449282164250815695796514774726063893046494536697360377}{21766563357473719493886316571660482472940184279503000347837793917903102594650375093478480790680231468742155267367994088305511154898446804850982870801800899963211440} a^{8} + \frac{734741559238693665003783499686521990395758785217147989914077701158988672393304629602998516540838819730019647452727667388500734891855747020258411424345554445247433}{5441640839368429873471579142915120618235046069875750086959448479475775648662593773369620197670057867185538816841998522076377788724611701212745717700450224990802860} a^{7} + \frac{1734424618046256752737312737430690258826785678286087380539336430253062495675657553817016596338297171361752012309510695249066298693116934487631881290249290684877}{4202039258199559747854501268660324801725904301062355279505365621216815172712427624223644940285758970799643874009265268012646941100086255762738005946293610031508} a^{6} - \frac{1062338134897199924892943277008963721102033474824707262486472365414117700154687093776963642778499062821847639081871011065622339676769634598316550910306883034747563}{10883281678736859746943158285830241236470092139751500173918896958951551297325187546739240395340115734371077633683997044152755577449223402425491435400900449981605720} a^{5} + \frac{140807440375647867832733256205805450650246681198150696296196262738885633582845182879281165277619692082702355919011120125366183171474042456333499334829059064254115}{1088328167873685974694315828583024123647009213975150017391889695895155129732518754673924039534011573437107763368399704415275557744922340242549143540090044998160572} a^{4} - \frac{1687812706767681934773228214556234473973901193449346198002707778588771772457303201618381696133985434156874076144254594159511040325101629666491696702321671471461227}{4081230629526322405103684357186340463676284552406812565219586359606831736496945330027215148252543400389154112631498891557283341543458775909559288275337668743102145} a^{3} - \frac{1482923307793682740319957861396497343863953453369823401638727679339457299766734792325109463916686674237007595280040132028054291166168047183373743281218678457265464}{4081230629526322405103684357186340463676284552406812565219586359606831736496945330027215148252543400389154112631498891557283341543458775909559288275337668743102145} a^{2} - \frac{41951143362742047932008463408802996460385316403992885263615249519158046536551519679215678785968448648739663879748569831882827306775151671919456608285253940550581}{906940139894738312245263190485853436372507678312625014493241413245962608110432295561603366278342977864256469473666420346062964787435283535457619616741704165133810} a + \frac{11526255296485123139650615550253849031581688427081855532081729324729966849317885658331063473932720915858562949945317839095171378970397598869807190687689778854658}{151156689982456385374210531747642239395417946385437502415540235540993768018405382593600561046390496310709411578944403391010494131239213922576269936123617360855635}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 739930020231000000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 20437401600 |
| The 200 conjugacy class representatives for t22n49 are not computed |
| Character table for t22n49 is not computed |
Intermediate fields
| 11.7.63019333158425674204677255696384.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/11.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/13.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 2.8.16.69 | $x^{8} + 12 x^{6} + 28 x^{4} + 52$ | $8$ | $1$ | $16$ | $C_4\wr C_2$ | $[2, 2, 5/2]^{4}$ | |
| 2.12.14.2 | $x^{12} + 2 x^{4} + 2 x^{3} + 2$ | $12$ | $1$ | $14$ | 12T27 | $[4/3, 4/3]_{3}^{4}$ | |
| $3$ | 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.1 | $x^{2} - 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| 3.9.13.2 | $x^{9} + 6 x^{5} + 3 x^{3} + 3$ | $9$ | $1$ | $13$ | $C_3^2 : D_{6} $ | $[3/2, 3/2, 5/3]_{2}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 7.7.0.1 | $x^{7} - x + 2$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $23$ | 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 23.7.0.1 | $x^{7} - x + 8$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 137 | Data not computed | ||||||