Normalized defining polynomial
\( x^{22} + 33 x^{20} + 275 x^{18} - 341 x^{16} - 7062 x^{14} - 1430 x^{12} + 44902 x^{10} + 9878 x^{8} - 41371 x^{6} + 10373 x^{4} + 1463 x^{2} - 81 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(24689900716543842090569619202412690538496=2^{30}\cdot 7^{10}\cdot 11^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $68.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{8} - \frac{1}{4}$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{8} a^{2} + \frac{1}{8}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} + \frac{1}{8} a^{4} + \frac{1}{16} a^{3} + \frac{3}{16} a^{2} - \frac{1}{16} a - \frac{3}{16}$, $\frac{1}{16} a^{12} + \frac{1}{16} a^{8} + \frac{3}{16} a^{4} - \frac{5}{16}$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{16} a + \frac{3}{8}$, $\frac{1}{32} a^{14} - \frac{1}{32} a^{12} + \frac{1}{32} a^{10} - \frac{1}{32} a^{8} + \frac{3}{32} a^{6} - \frac{3}{32} a^{4} - \frac{5}{32} a^{2} + \frac{5}{32}$, $\frac{1}{32} a^{15} - \frac{1}{32} a^{13} - \frac{1}{32} a^{11} - \frac{1}{16} a^{10} + \frac{1}{32} a^{9} + \frac{1}{16} a^{8} - \frac{1}{32} a^{7} - \frac{1}{8} a^{6} + \frac{1}{32} a^{5} + \frac{1}{8} a^{4} + \frac{1}{32} a^{3} + \frac{3}{16} a^{2} - \frac{1}{32} a - \frac{3}{16}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{8} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} + \frac{1}{4} a - \frac{11}{64}$, $\frac{1}{64} a^{17} + \frac{1}{32} a^{9} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{11}{64} a + \frac{1}{4}$, $\frac{1}{64} a^{18} + \frac{1}{32} a^{10} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{5}{64} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{128} a^{19} - \frac{1}{128} a^{18} - \frac{1}{128} a^{17} - \frac{1}{128} a^{16} + \frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{1}{64} a^{9} + \frac{7}{64} a^{8} - \frac{1}{16} a^{7} + \frac{1}{16} a^{6} - \frac{3}{16} a^{5} + \frac{1}{16} a^{4} + \frac{5}{128} a^{3} - \frac{5}{128} a^{2} + \frac{27}{128} a - \frac{21}{128}$, $\frac{1}{9872681746338176} a^{20} + \frac{32582458689181}{4936340873169088} a^{18} + \frac{37616276893101}{9872681746338176} a^{16} - \frac{13145115686425}{2468170436584544} a^{14} - \frac{108206329782801}{4936340873169088} a^{12} + \frac{9218912617097}{308521304573068} a^{10} + \frac{66313536820895}{4936340873169088} a^{8} + \frac{161021851392537}{2468170436584544} a^{6} - \frac{681933327832943}{9872681746338176} a^{4} - \frac{2288713993026925}{4936340873169088} a^{2} + \frac{3554742704314277}{9872681746338176}$, $\frac{1}{88854135717043584} a^{21} - \frac{106828904445991}{29618045239014528} a^{19} - \frac{1}{128} a^{18} + \frac{105816976902359}{22213533929260896} a^{17} - \frac{1}{128} a^{16} + \frac{141115536600109}{22213533929260896} a^{15} - \frac{36068776594267}{14809022619507264} a^{13} + \frac{378893580303353}{44427067858521792} a^{11} + \frac{3}{64} a^{10} - \frac{545320677664055}{22213533929260896} a^{9} + \frac{3}{64} a^{8} - \frac{147499453180531}{22213533929260896} a^{7} - \frac{1}{16} a^{6} - \frac{19810254211363159}{88854135717043584} a^{5} + \frac{3}{16} a^{4} - \frac{4037515703050981}{88854135717043584} a^{3} + \frac{3}{128} a^{2} + \frac{3076415217678271}{11106766964630448} a - \frac{29}{128}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6858150642190 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 112640 |
| The 44 conjugacy class representatives for t22n34 |
| Character table for t22n34 is not computed |
Intermediate fields
| 11.11.4910318845910094848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | $20{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| $11$ | 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ |
| 11.11.11.6 | $x^{11} + 11 x + 11$ | $11$ | $1$ | $11$ | $F_{11}$ | $[11/10]_{10}$ | |