Normalized defining polynomial
\( x^{22} - 5 x^{21} + x^{20} + 45 x^{19} - 310 x^{18} + 927 x^{17} - 1531 x^{16} + 1204 x^{15} + 2550 x^{14} - 9408 x^{13} + 18565 x^{12} - 24332 x^{11} + 23469 x^{10} + 9560 x^{9} - 46190 x^{8} + 69717 x^{7} - 91965 x^{6} + 67098 x^{5} - 36153 x^{4} + 9787 x^{3} + 1002 x^{2} - 474 x - 25 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{293} a^{20} + \frac{4}{293} a^{19} + \frac{90}{293} a^{18} - \frac{105}{293} a^{17} - \frac{1}{293} a^{16} + \frac{41}{293} a^{15} - \frac{43}{293} a^{14} + \frac{60}{293} a^{13} - \frac{68}{293} a^{12} - \frac{101}{293} a^{11} - \frac{12}{293} a^{10} + \frac{93}{293} a^{9} - \frac{63}{293} a^{8} - \frac{142}{293} a^{7} - \frac{118}{293} a^{6} - \frac{108}{293} a^{5} + \frac{136}{293} a^{4} - \frac{104}{293} a^{3} + \frac{5}{293} a^{2} - \frac{75}{293} a + \frac{6}{293}$, $\frac{1}{241880482682029607901967603540921814902209399806018399} a^{21} - \frac{176763711005225296701980084748153030821202062148025}{241880482682029607901967603540921814902209399806018399} a^{20} - \frac{95032614544832539180719389847010783340364799255565086}{241880482682029607901967603540921814902209399806018399} a^{19} - \frac{10547948230748583347059027880739555860255032869762413}{241880482682029607901967603540921814902209399806018399} a^{18} + \frac{37632622117888719852651765425014719408793579174379219}{241880482682029607901967603540921814902209399806018399} a^{17} + \frac{87028950847319705430524120404684223048031018399267465}{241880482682029607901967603540921814902209399806018399} a^{16} + \frac{56270790988730829185415952882933793783007918582791128}{241880482682029607901967603540921814902209399806018399} a^{15} + \frac{20650930282857025826394218367851670181368186371502845}{241880482682029607901967603540921814902209399806018399} a^{14} + \frac{99762960373364718817856531262802131932198351410211920}{241880482682029607901967603540921814902209399806018399} a^{13} - \frac{91858200858096463169417175579433696666656507108996475}{241880482682029607901967603540921814902209399806018399} a^{12} - \frac{103470334347156941589655156774686080017368796712895834}{241880482682029607901967603540921814902209399806018399} a^{11} - \frac{98551622306545360571630048980675580900344157526573157}{241880482682029607901967603540921814902209399806018399} a^{10} + \frac{63054080114065539518222427559168464868433896095133131}{241880482682029607901967603540921814902209399806018399} a^{9} - \frac{55756521638898597833655779112114046108470735078821662}{241880482682029607901967603540921814902209399806018399} a^{8} - \frac{59429016762425363469142565961558535517806109772326830}{241880482682029607901967603540921814902209399806018399} a^{7} - \frac{118306412936693927826933855480444989293230956983691469}{241880482682029607901967603540921814902209399806018399} a^{6} + \frac{52770773231177432762817737664651097956827070035953062}{241880482682029607901967603540921814902209399806018399} a^{5} - \frac{19372342198504441156509134429165138259227377103559554}{241880482682029607901967603540921814902209399806018399} a^{4} + \frac{78432400190290560958982330319916802424769758512453226}{241880482682029607901967603540921814902209399806018399} a^{3} - \frac{40854431082864203902975844838351797917083381504901163}{241880482682029607901967603540921814902209399806018399} a^{2} - \frac{50578944350883125320507668667459728004545249551088844}{241880482682029607901967603540921814902209399806018399} a - \frac{32147818416103091910007225605324758612052806775128439}{241880482682029607901967603540921814902209399806018399}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26707131873.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||