Normalized defining polynomial
\( x^{22} - 5 x^{21} + 6 x^{20} + 16 x^{19} - 102 x^{18} + 158 x^{17} + 126 x^{16} - 120 x^{15} + 3303 x^{14} - 15009 x^{13} - 7047 x^{12} + 123140 x^{11} - 153297 x^{10} - 373493 x^{9} + 984859 x^{8} + 258716 x^{7} - 2326169 x^{6} + 706632 x^{5} + 2505600 x^{4} - 1023169 x^{3} - 1195624 x^{2} + 155028 x + 13045 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{18379970324595119796960087449861321490049579674595062423187015794251} a^{21} - \frac{5764941055086892786775078968950811301826063897601043754310677664517}{18379970324595119796960087449861321490049579674595062423187015794251} a^{20} - \frac{4628685404423297863371519269982435574899610041469202254002587086633}{18379970324595119796960087449861321490049579674595062423187015794251} a^{19} + \frac{8472647898984793013120744557138016823394376534894426984757348935549}{18379970324595119796960087449861321490049579674595062423187015794251} a^{18} + \frac{2841312940321825089937604632797805935676117207090508560603152662596}{18379970324595119796960087449861321490049579674595062423187015794251} a^{17} - \frac{7553179990517947108318246824418924362491962433852791416146664254281}{18379970324595119796960087449861321490049579674595062423187015794251} a^{16} + \frac{9118335841194490444378708490424104172983680477735360267993866392461}{18379970324595119796960087449861321490049579674595062423187015794251} a^{15} - \frac{3445637529849813348932825576420186952060111543010630867703317600935}{18379970324595119796960087449861321490049579674595062423187015794251} a^{14} + \frac{5610061182416510086063853240836138310319788731188017787557675043395}{18379970324595119796960087449861321490049579674595062423187015794251} a^{13} - \frac{695115363352760944064246043730298856075712958477547528431755361402}{18379970324595119796960087449861321490049579674595062423187015794251} a^{12} - \frac{1257275889091112646351673515802136569722028373891269782579057267547}{18379970324595119796960087449861321490049579674595062423187015794251} a^{11} + \frac{8489954898610517395331026738137270448724084654581995195787155808429}{18379970324595119796960087449861321490049579674595062423187015794251} a^{10} + \frac{8080059689286986447257097597964690127840864735057487161434046173542}{18379970324595119796960087449861321490049579674595062423187015794251} a^{9} - \frac{8535465971649226299007975768050297760025397692241355070663589702730}{18379970324595119796960087449861321490049579674595062423187015794251} a^{8} + \frac{3502407008895728320085179346969112914991183037767657111828081098028}{18379970324595119796960087449861321490049579674595062423187015794251} a^{7} + \frac{7830231015194647739057784593269424513238016413010271406260847348893}{18379970324595119796960087449861321490049579674595062423187015794251} a^{6} - \frac{2197256718183804109593566171119290267530036519930857415089677672082}{18379970324595119796960087449861321490049579674595062423187015794251} a^{5} + \frac{6915529050012815406830061913400356126331171073746826062828333224797}{18379970324595119796960087449861321490049579674595062423187015794251} a^{4} - \frac{4518058343985062567303823750025157732059541032959074815506663717143}{18379970324595119796960087449861321490049579674595062423187015794251} a^{3} - \frac{4188267693160982751500854187281851156638834228241020557422405837091}{18379970324595119796960087449861321490049579674595062423187015794251} a^{2} - \frac{7107720603421808567261471120580024601747624139837519720913228379403}{18379970324595119796960087449861321490049579674595062423187015794251} a - \frac{3382682252555967175056999039543097555723160979233025942714880269893}{18379970324595119796960087449861321490049579674595062423187015794251}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36620289558.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{5}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||