Normalized defining polynomial
\( x^{22} - 35 x^{20} - 72 x^{19} + 349 x^{18} + 1479 x^{17} + 303 x^{16} - 6784 x^{15} - 5684 x^{14} + 33196 x^{13} + 87806 x^{12} + 64287 x^{11} - 46217 x^{10} - 105124 x^{9} - 72109 x^{8} - 28967 x^{7} + 30762 x^{6} + 56113 x^{5} - 4944 x^{4} - 27192 x^{3} - 1892 x^{2} + 3210 x + 509 \)
Invariants
| Degree: | $22$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[10, 6]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(22661033510180079603495293971842498241=1297^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $1297$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} - \frac{2}{5} a^{14} + \frac{2}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{15} + \frac{2}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{18} - \frac{2}{5} a^{14} - \frac{1}{5} a^{13} + \frac{2}{5} a^{12} + \frac{2}{5} a^{11} - \frac{2}{5} a^{10} + \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{19} - \frac{2}{5} a^{15} - \frac{1}{5} a^{14} + \frac{2}{5} a^{13} + \frac{2}{5} a^{12} - \frac{2}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{2}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{7975} a^{20} - \frac{664}{7975} a^{19} + \frac{4}{1595} a^{18} + \frac{22}{725} a^{17} - \frac{499}{7975} a^{16} + \frac{3893}{7975} a^{15} + \frac{259}{1595} a^{14} + \frac{1483}{7975} a^{13} + \frac{2974}{7975} a^{12} + \frac{2137}{7975} a^{11} - \frac{3966}{7975} a^{10} - \frac{2661}{7975} a^{9} - \frac{3302}{7975} a^{8} + \frac{112}{319} a^{7} - \frac{3582}{7975} a^{6} + \frac{2986}{7975} a^{5} - \frac{372}{1595} a^{4} - \frac{118}{7975} a^{3} + \frac{3508}{7975} a^{2} - \frac{71}{725} a + \frac{214}{7975}$, $\frac{1}{2337585875407296464388775514624188605210145975} a^{21} + \frac{5551590143494763382565894956769175395928}{93503435016291858575551020584967544208405839} a^{20} - \frac{136146803179779107580637211866670414353728621}{2337585875407296464388775514624188605210145975} a^{19} - \frac{21202926027751607505229886294595227316894843}{2337585875407296464388775514624188605210145975} a^{18} + \frac{120966245485723495588424639155635043719450324}{2337585875407296464388775514624188605210145975} a^{17} + \frac{52555982245831399498746616930677666630324407}{2337585875407296464388775514624188605210145975} a^{16} + \frac{62735339643652360874525074158977720122106176}{137505051494546850846398559683775800306479175} a^{15} - \frac{287412114515454948136104282794411002183870237}{2337585875407296464388775514624188605210145975} a^{14} - \frac{419454859382846581577378168001114211566177994}{2337585875407296464388775514624188605210145975} a^{13} - \frac{468141505092664693784390292374795003500743057}{2337585875407296464388775514624188605210145975} a^{12} - \frac{106321724465194494410503973398481877232313458}{2337585875407296464388775514624188605210145975} a^{11} + \frac{147945725704605686103335622435509717261436953}{467517175081459292877755102924837721042029195} a^{10} - \frac{287114380832808561096600615708773674228183246}{2337585875407296464388775514624188605210145975} a^{9} - \frac{80901214048109307139987912505420052644850178}{2337585875407296464388775514624188605210145975} a^{8} - \frac{647129721709098966488943856285591569051214772}{2337585875407296464388775514624188605210145975} a^{7} + \frac{29283982963926072614382727567179519292450478}{2337585875407296464388775514624188605210145975} a^{6} - \frac{993796972140190232801997439554338254842726791}{2337585875407296464388775514624188605210145975} a^{5} - \frac{430801405309626894747746659968949733514712873}{2337585875407296464388775514624188605210145975} a^{4} - \frac{23737049952615916150835611991591034347597854}{2337585875407296464388775514624188605210145975} a^{3} - \frac{741424854472750996540157729559599982335557544}{2337585875407296464388775514624188605210145975} a^{2} + \frac{28568128764423075086575266990041024466825899}{467517175081459292877755102924837721042029195} a - \frac{32488376170004017359035234126590716429307436}{80606409496803326358233638435316848455522275}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 45272687172.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 22528 |
| The 100 conjugacy class representatives for t22n30 are not computed |
| Character table for t22n30 is not computed |
Intermediate fields
| 11.11.3670285774226257.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/3.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/13.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{9}$ | ${\href{/LocalNumberField/19.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/23.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/53.11.0.1}{11} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 1297 | Data not computed | ||||||